-
Исследование метода простой итерации и метода Ньютона для решения систем двух нелинейных алгебраических уравнений
Сравнение методов простой итерации и Ньютона для решения систем нелинейных уравнений по числу итераций, времени сходимости в зависимости от выбора начального приближения к решению и допустимой ошибки. Описание программного обеспечения и тестовых задач.
-
Опыт применения критерия Сильвестра в некоторых задачах устойчивости консервативных систем
Краткая биография английского математика Дж. Сильвестра. Устойчивость равновесия консервативной системы с конечным числом степеней свободы. Функции Ляпунова и критерий Сильвестра. Пример определения условия устойчивости равновесного положения системы.
-
Основи теорії графів. Властивості ойлерових та гамільтонових графів
Оцінки для числа ребер з компонентами зв‘язності. Орієнтовані графи, графи з петлями, графи з паралельними дугами. Ойлерова ломиголовка "Кенігзберзьких мостів". Основні поняття та означення ойлерових графів. Сутність та поняття гамільтонових графів.
-
Предел и непрерывность функций нескольких переменных
Понятие функции нескольких переменных. Аргументы, частное значение и область применения функции. Рассмотрение функции двух и трех переменных. Предел функции нескольких переменных, теорема. Главная сущность непрерывности функции нескольких переменных.
-
Нильпотентная длина конечных групп с известными добавлениями к максимальным подгруппам
Этапы возникновения, развития и основы теории исследования величины нильпотентной длины конечных разрешимых групп с известными добавлениями к максимальным подгруппам. Признаки разрешимости конечной группы, подгруппа Фиттинга, ее свойства и теоремы.
-
Нумерология
Понятие и история возникновения науки нумерологии, особенности русской и китайской нумерологии. Разработка основных положений нынешнего варианта западной нумерологии Пифагором, гармонические числа. Пифагорейская наука о числах. Халдейская нумерология.
-
Нумерология как точная наука
Развитие нумерологии совместными усилиями математиков и философов. Подходы к понятию числа. Их свойства и способы употребления. Применение к нумерологии грамматического подхода. Интерпретация некоторых чисел. Сущность диалектического отрицания понятия.
-
О w-насыщенных формациях с п-разложимым дефектом 1
В работе представлено описание не п-разложимых w-насыщенных формаций с п-разложимой максимальной w-насыщенной подформацией. Исследование структурного строения и классификации частично насыщенных формаций конечных групп. Методы абстрактной теории.
-
О минимальных замкнутых тотально насыщенных не формациях конечных групп
Описание Н-критических формаций для некоторых наиболее известных формаций Н. При изучении внутреннего строения, а также классификации насыщенных формаций важную роль играют так называемые минимальные насыщенные не Н-формации или Н-критические формации.
-
Область определения функции
Применение метода интервалов для решения неравенств. Формула перехода от простейшего логарифмического неравенства к двойному. Формула решения тригонометрического уравнения. Нахождение множества всех первообразных функции f(x) на области определения.
-
Обобщение классических средних величин
Квази-средние как обобщение классических средних величин. Квази-средние и функциональные уравнения. Решение некоторых функциональных уравнений. Характеристическое свойство квази-средних. Квази-средние и выпуклые функции.
-
Обозначения и определения тензорной алгебры
Особенности системы индексных обозначений. Специфика суммирования в тензорной алгебре. Главные операции в алгебре, которые называются сложением, умножением и свертыванием. Применение операции внутреннего умножения. Симметричные и антисимметричные объекты.
-
Обработка результатов измерений
Сущность метрологии как науки об измерениях, предмет и методы ее изучения. Разновидности измерений, их отличительные признаки и особенности реализации. Обработка результатов прямых, косвенных и совместных измерений. Погрешности и пути их минимизации.
-
Обратимые матрицы над кольцом целых чисел
Обратимые матрицы над полем Zp. Формула для подсчета обратимых матриц порядка 2. Формула для подсчета обратимых матриц порядка 3. Общая формула подсчета обратимых матриц над полем Zp. Обратимые матрицы над Zn.
-
Обчислення визначених інтегралів за формулами прямокутників, трапецій та Сімпсона
Історія розвитку обчислювальної техніки. Особливості застосування швидкодіючих комп'ютерів для розв’язання складних математичних задач. Методика написання програми для обчислення визначених інтегралів за формулами прямокутників, трапецій та Сімпсона.
-
Кручение стержней
Изучение кручения стержней, имеющих в сечении правильный многоугольник (призматический, тонкостенный с открытым профилем), круг и эллипс (круглый вал переменного диаметра, эллиптический). Практическое решение задач Вебера, Сен-Венана и Лейбензона.
-
Численные методы линейной алгебры
Сравнительный анализ численных методов решения систем линейных алгебраических уравнений. Вычисление определителей и обратных матриц. Реализация методов в виде машинных программ на языке высокого уровня и решение задач на ЭВМ. Модификации метода Гаусса.
-
Определение интегралов
Расчет неопределенных интегралов, проверка результатов дифференцированием. Вычислить по формуле Ньютона-Лейбница определенный интеграл. Вычисление площади фигуры, ограниченной заданной параболой и прямой. Общее решение дифференциального уравнения.
-
Решение дифференциальных уравнений
Характеристика уравнений с разделяющимися переменными. Сущность метода Бернулли и метода Лагранжа, задачи Коша. Решение линейных уравнений n-го порядка. Фундаментальная система решений - набор линейно независимых решений однородной системы уравнений.
-
Апарат мереж Петрі та його використання під час моделювання інтелектуальніх мереж (ІМ)
Мережа Петрі як графічний і математичний засіб моделювання систем і процесів. Основні елементи мережі Петрі, правила спрацьовування переходу. Розмітка мережі Петрі із кратними дугами. Методика аналізу характеристик обслуговування запитів на послуги IМ.