Referat.me

Название: К расчету эффективных магнитных полей в магнитных жидкостях

Вид работы: доклад

Рубрика: Физика

Размер файла: 99.82 Kb

Скачать файл: referat.me-340621.docx

Краткое описание работы: К РАСЧЕТУ ЭФФЕКТИВНЫХ МАГНИТНЫХ ПОЛЕЙ В МАГНИТНЫХ ЖИДКОСТЯХ Диканский Ю.И. Один из подходов к определению эффективных полей связан с анализом действующих на дипольную частицу сил [1]. В работе [2] на основании такого анализа получена формула для расчета эффективных электрических полей в жидких диэлектриках.

К расчету эффективных магнитных полей в магнитных жидкостях

К РАСЧЕТУ ЭФФЕКТИВНЫХ МАГНИТНЫХ ПОЛЕЙ В МАГНИТНЫХ ЖИДКОСТЯХ

Диканский Ю.И.

Один из подходов к определению эффективных полей связан с анализом действующих на дипольную частицу сил [1]. В работе [2] на основании такого анализа получена формула для расчета эффективных электрических полей в жидких диэлектриках. Механический перенос подхода, используемого при ее выводе, возможный благодаря глубокой аналогии между законами электрической поляризации и намагничивания позволяет получить аналогичную формулу для расчета эффективных магнитных полей в магнитных жидкостях в приближении однородности среды:

, (1)

где - напряженность внешнего поля, - магнитная восприимчивость магнитной жидкости, - объемная концентрация ее дисперсной фазы.

Как следует из [3], полученное выражение для эффективного поля согласуется с формулой Лоренц-Лоренца при выполнении условия

, (2)

которое непосредственно следует из того, что функция Клаузиса-Моссоти не зависит от плотности (концентрации диполей):

(3)

Выражение (1) для эффективного поля может быть представлено в виде , т.е. , откуда для параметра эффективного поля следует:

. (4)

Полученная формула позволяет рассчитать параметр эффективного поля по экспериментально полученной зависимости .

Изучение диполь-дипольного взаимодействия однодоменных дисперсных частиц возможно также с помощью анализа температурных зависимостей магнитной восприимчивости магнитных жидкостей. Выражение для расчета эффективного поля можно получить, воспользовавшись подходом, предложенным в [2], возможным благодаря непосредственной связи эффективного поля с действующей на частицу среды силой. При этом, естественно воспользоваться результатами макроскопической теории для объемной плотности сил в магнитном поле. Ранее, выражение для таких сил выводилось во многих работах [3-5] путем приравнивания вариации свободной энергии (при постоянной температуре и векторном потенциале магнитного поля) работе внутренних сил. Вместе с тем авторами работы [6] было показано, что в более общем случае, при вычислении вариации полной (или внутренней) энергии необходимоучитывать вариации температур или энтропий. Если осуществить некоторое виртуальное перемещение элемента магнитной жидкости , находящейся в магнитном поле Н (например, в поле соленоида) так, что часть жидкости вытиснится из пространства, занимаемого полем, то изменение энергии поля, соответствующее изотермическому процессу может быть записано в виде, аналогичном выведенного в [3] для жидкого диэлектрика:

, (5)

где - концентрация дипольных частиц.

Можно предположить, что в общем случае, с учетом изменения температуры это выражение должно быть дополнено слагаемым , т.е. . Изменение температуры определится выражением для магнетокалорического эффекта:

. (6)

Тогда, с учетом предложенного характера виртуального перемещения и выражения для изменения температуры можно получить:

(7)

Наложим ограничение на процесс виртуального перемещения, предположив, что оно не сопровождается изменением концентрации дипольных частиц. В этом случае, второй член в выражении (5) можно положить равным нулю. Тогда, окончательно, для изменения полной энергии с учетом получим:

. (8)

Приравняем полученное выражение для работе пондеромоторных сил, взятой с обратным знаком, т.е. . С учетом этого, нетрудно получить:

.

Используя соотношения векторного анализа

,

. (9)

С учетом того, что , получим:

. (10)

В работе [2] для плотности сил в дипольном приближении найдено следующее выражение:

(11)

Приравнивая (10) и (11), с учетом отсутствия в МЖ пространственной дисперсии и токов проводимости, получим:

(12)

Из формулы (12) видно, что величина эффективного поля связана с магнитной восприимчивостью и ее производной по температуре и может быть рассчитана при использовании зависимости магнитной восприимчивости от температуры. По-видимому, впервые (12) было приведено нами в работе [7] без вывода.

Условие согласуемости (12) с формулой Лоренц-Лоренца для эффективного поля имеет вид:

(13)

Соотношение (13) может быть использовано для оценки в случае применимости формулы Лоренц-Лоренца.

Проверим справедливость полученной формулы (12) для некоторых известных функциональных форм зависимости магнитной восприимчивости от температуры.

В случае парамагнитной жидкости для температурной зависимости магнитной восприимчивости справедлив закон Кюри:

и (14)

Подставив эти выражения в формулу (12), получим: , что и следовало ожидать для системы с невзаимодействующими частицами.

Для парамагнитной жидкости, с магнитной восприимчивостью, подчиняющейся закону Кюри-Вейсса,

, , (15)

где - температура Кюри. Формула (12) в этом случае дает:

(16)

Приравняв (16) к выражению для эффективного поля, записанного в виде и учитывая, что , получим:

(17)

Последнее соотношение, с учетом выражения (15) для дает , что, как известно, следует также непосредственно из закона Кюри-Вейсса. Проведенные оценки позволяют предположить возможность применения формулы (12) для расчета эффективных полей и при других формах зависимости , в том случае, когда выполняется поставленное при ее выводе требование однородности среды.

Литература

1. Де Грот С., и Мазур П. Неравновесная термодинамика.- М.: Мир, 1964.-456 с.

2. Бараш Ю.С. О макроскопическом описании действующего поля в некоторых диэлектриках.// ЖЭТФ.-Т.79, вып.6.-С.2271-2281.

3. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. -М.: Наука.-1982.-623 с.

4. 4.Стреттон Д. Теория электромагнетизма.- М.-Л.: Гостехиздат, 1948.-312 с.

5. Пановский В., Филипс М. Классическая электродинамика.- М.: Гостехиздат, 1957.

6. Гогосов В.В., Налетова В.А., Шапошникова Г.А. Гидродинамика дисперсных систем, взаимодействующих с электромагнитным полем.// Механика жидкости и газа.- №3.-1977.- С.62-70.

7. Диканский Ю.И. Экспериментальное исследование эффективных полей в магнитной жидкости.// Магнитная гидродинамика.- 1982.- №3. – С.33-36.

Похожие работы

  • Плоская электромагнитная волна

    Определение параметров плоской электромагнитной волны: диэлектрической проницаемости, длины, фазовой скорости и сопротивления. Определение комплексных и мгновенных значений векторов. Построение графиков зависимостей мгновенных значений и АЧХ волны.

  • Исследования магнитных полей в веществе (№26)

    Нижегородский Государственный Технический Университет. Лабораторная работа по физике № 2-26. Исследования магнитных полей в веществе Выполнил студент

  • Построение зонной структуры по заданным направлениям в зоне Брюллюэна

    Домашняя работа Построение зонной структуры по заданным направлениям в зоне Брюллюэна Выполнил: Гумбатов К.C. Москва 2008 . Содержание задания №1 Построить зонную структуру по заданным направлениям в зоне Брюллюэна E(k) вблизи энергий Ev max и Ec min. Указать на ней положение примесных акцепторных состояний EA и значения эффективных масс для основных носителей заряда mp*.

  • Исследование магнитной жидкости методом рассеяния света

    Спектральные измерения интенсивности света. Исследование рассеяния света в магнитных коллоидах феррита кобальта и магнетита в керосине. Кривые уменьшения интенсивности рассеянного света со временем после выключения электрического и магнитного полей.

  • Электродинамические приборы

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОВЕЦИОНАЛЬНОГО ОБРАЗОВАНИЯ «СЕВЕРО-ВОСТОЧНЫЙ

  • Исследование процессов деформации капель магнитных эмульсий

    Лабораторная работа ИССЛЕДОВАНИЕ ПРОЦССОВ ДЕФОРМАЦИИ КАПЕЛЬ МАГНИТНЫХ ЭМУЛЬСИЙ Исследование особенностей деформации микрокапель прямых и обратных эмульсий в магнитных и электрических полях

  • Капиллярные явления в магнитных коллоидах

    Исследование капиллярного подъема магнитной жидкости при воздействии электрического и магнитного полей. Изучение проявления действия пондеромоторных сил на жидкие намагничивающиеся среды и процессы релаксации заряда в тонких слоях магнитных жидкостей.

  • Преобразование энергии в электрических машинах постоянного тока

    Составление развернутой схемы неперекрещивающейся простой петлевой обмотки, нахождение полюсов и щеток. Определение значения тока обмотки якоря. Порядок вычисления коэффициента полезного действия генератора, вращающий момент и сумму потерь двигателя.

  • О единой теории векторных полей

    Экспериментальный и теоретический методы познания физической реальности. Единая теория векторных полей - обобщение уравнений электродинамики Максвелла, теоретическое обоснование схемы их построения; исследование гравитационного и электрического полей.

  • Нормирование электромагнитных полей

    Основными документами, регламентирующими электромагнитные поля на производстве, являются санитарные правила „Электромагнитные поля в производственных условиях. Санитарно-эпидемиологические правила и нормативы. СанПиН 2.2.4.1191-03” Они были введены 30.01.2003г. Их требования распространяются на работников, подвергающихся воздействию ослабленного геомагнитного поля, электростатического поля, постоянного магнитного поля, электромагнитного поля промышленной частоты, электромагнитных полей радиочастотного диапазона электромагнитные поля.