Referat.me

Название: Основные операции паросилового цикла Ренкина

Вид работы: контрольная работа

Рубрика: Физика

Размер файла: 24.33 Kb

Скачать файл: referat.me-340662.docx

Краткое описание работы: Установки паросилового термодинамического цикла. Технологическая схема паросиловой установки для производства электроэнергии. Процессы испарения жидкости при высоком давлении, расширения пара и его конденсации, увеличения давления до начального значения.

Основные операции паросилового цикла Ренкина

Вопрос. Паросиловой цикл Ренкина, схемы установки. Изображение в Р , vT,s –диаграммах

Цикл Ренкина - теоретический термодинамический цикл паровой машины, состоящий из четырех основный операций:

-1- испарения жидкости при высоком давлении;

-2- расширения пара;

-3- конденсации пара;

-4- увеличения давления жидкости до начального значения.

На рис. 1 представлена технологическая схема паросиловой установки для производства электроэнергии.

Пар большого давления и температуры подается в сопловые аппараты турбины, где происходит превращение потенциальной энергии пара в кинетическую энергию потока пара (скорость потока – сверхзвуковая). Кинетическая энергия сверхзвукового потока превращается на лопатках турбины в кинетическую энергию вращения колеса турбины и в работу производства электроэнергии.

На рис. 1 показана одна турбина, на самом деле турбина имеет несколько ступеней расширения пара.

После турбины пар направляется в конденсатор. Это обычный теплообменник, внутри труб проходит охлаждающая вода, снаружи – водяной пар, который конденсируется, вода становится жидкой.


Рис. 1. Принципиальная технологическая схема паросиловой установки.

Эта вода поступает в питательный насос, где происходит увеличение давления до номинальной (проектной) величины.

Далее вода с высоким давлением направляется в котельный агрегат (на рис. 1 он обведен штриховой линией). В этом агрегате вода сначала нагревается до температуры кипения от дымовых газов из топки котла, затем поступает в кипятильные трубы, где происходит фазовое превращение вплоть до состояния сухого насыщенного пара (см. т. 5 на рис. 6.3).

Наконец, сухой насыщенный пар идет в пароперегреватель, обогреваемый топочными дымовыми газами из топки. Состояние пара на выходе из пароперегревателя характеризуется точкой 1. Так замыкается цикл. Этот цикл паросиловой установки предложил немецкий инженер Ренкин, и потому его и назвали циклом Ренкина.

Рассмотрим цикл Ренкина на трех термодинамических диаграммах p – v, T – s, h – s (см. рис. 2).


Нумерация точек совпадает с нумерацией на рис. 1. Процесс 1 – 2 – расширение пара в соплах турбины; 2 – 3 – процесс конденсации пара; 3 – 4 – процесс в питательном насосе;4 – 5 – процесс нагрева воды и ее кипение; 5 – 1 – процесс перегрева пара. Заштрихованы те области диаграмм, площадь которых численно равна работе и теплоте за цикл, причем qц = wц .

Рис. 2. Цикл Ренкина на термодинамических диаграммах

Из технологической схемы на рис. 1 и диаграммы Т – s на рис. 2 следует, что теплота подводится к рабочему телу в процессах 4 – 5 – 1, у которых ds > 0. И эти процессы характеризуются инвариантом p1 = const. Поэтому подводимая в цикле Ренкина теплота qподв равна:

qподв = h1 – h4 . Дж. (6.2)


Теплота отводится от рабочего тела в процессе 2 – 3 (ds < 0) и этот процесс тоже p2 = const. Поэтому

qотв = h2 – h3 . Дж. (1)

Разность между подведенной теплотой и отведенной представляет собой теплоту цикла qц , превращенную в работу wц

wц = qц = (h1 – h4 ) – (h2 – h3 ) = (h1 – h2 ) – (h4 – h3 ).

Разность энтальпии воды до питательного насоса (точка 3) и после (точка 4) ничтожно мала. В связи с этим

wц = qц = h1 – h2 . (2)

Термический коэффициент полезного действия цикла Ренкина (а это отношение «пользы», т.е. wц , к «затратам», т.е qподв ) равен

ηt = (h1 – h2 )/(h1 – h4 ). (3)


Рис. 3. Иллюстрация причины малого КПД цикла Ренкина по сравнению с циклом Карно. Потери работы – заштрихованная площадь. Нумерация точек совпадает с нумерацией на рис. 1 и 2.

Похожие работы

  • Анализ цикла паротурбинной установки

    Способы повышения тепловой эффективности паросиловых установок. Основные характеристики паротурбинной установки. Построение диаграммы тепловых и эксергетических потоков в установке. Расчёт параметров точек идеального и действительного циклов ПТУ.

  • Абсолютная и относительная влажность воздуха

    Абсолютная и относительная влажность воздуха. Атмосферный воздух всегда содержит некоторое количество влаги в виде паров. Влажность воздуха в помещениях с естественной вентиляцией обуславливается выделением влаги людьми и растениями в процессе дыхания, испарением бытовой влаги при приготовлении пищи, стирке и сушке белья, а также технологической влагой (в производственных помещениях) и влажностью ограждающих конструкций (в первый год эксплуатации зданий).

  • Расчет и анализ идеального цикла ДВС со смешанным подводом теплоты

    Молярная масса и массовые теплоемкости газовой смеси. Процесс адиабатного состояния. Параметры рабочего тела в точках цикла. Влияние степени сжатия, повышения давления и изобарного расширения на термический КПД цикла. Процесс отвода теплоты по изохоре.

  • Техническая термодинамика

    Определение конечного давления и объема смеси, величины работы и теплоты, участвующих в процессах термодинамики. Анализ КПД цикла Карно. Схема паросиловой установки, описание ее работы. Расчет массового расхода аммиака и мощности привода компрессора.

  • Термодинамический расчет газового цикла

    Расчет термодинамического газового цикла. Определение массовых изобарной и изохорной теплоёмкостей. Процессы газового цикла. Изохорный процесс. Уравнение изохоры - v = const. Политропный процесс. Анализ эффективности цикла. Определение работы цикла.

  • Расчет цикла паротурбинных установок

    Порядок определения термического коэффициента полезного действия циклов, исследуемой установки брутто. Вычисление удельного расхода тепла, коэффициента практического использования. Относительное увеличение КПД от применения промперегрева и регенерации.

  • Истечение и дросселирование водяного пара. Прямые термодинамические циклы – циклы паротурбинных установок

    Задачи и их решения по теме: процессы истечения водяного пара. Дросселирование пара под определенным давлением. Прямой цикл – цикл теплового двигателя. Нагревание и охлаждение. Паротурбинные установки. Холодильные циклы. Эффективность цикла Ренкина.

  • Термодинамика теплофизических свойств воды и водяного пара

    Условие и содержание задания Идеальный газ (μ – 18,0 г/моль, к = 1,33) при V изохорно нагревается до T , а затем изотермически до Р . После изобарного и изоэнтропного сжатия рабочее тело возвращается в начальное состояние.

  • Тепловой режим земной коры и источники геотермального тепла

    Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Южно-Уральский государственный университет»»

  • Система регенерации на тепловой электростанции

    Термодинамические основы регенеративного подогрева питательной воды на тепловой электростанции (ТЭС). Основные преимущества многоступенчатого регенеративного подогрева основного конденсата и питательной воды. Технические особенности системы регенерации.