Название: Основные операции паросилового цикла Ренкина
Вид работы: контрольная работа
Рубрика: Физика
Размер файла: 24.33 Kb
Скачать файл: referat.me-340662.docx
Краткое описание работы: Установки паросилового термодинамического цикла. Технологическая схема паросиловой установки для производства электроэнергии. Процессы испарения жидкости при высоком давлении, расширения пара и его конденсации, увеличения давления до начального значения.
Основные операции паросилового цикла Ренкина
Вопрос. Паросиловой цикл Ренкина, схемы установки. Изображение в Р , v -и T,s –диаграммах
Цикл Ренкина - теоретический термодинамический цикл паровой машины, состоящий из четырех основный операций:
-1- испарения жидкости при высоком давлении;
-2- расширения пара;
-3- конденсации пара;
-4- увеличения давления жидкости до начального значения.
На рис. 1 представлена технологическая схема паросиловой установки для производства электроэнергии.
Пар большого давления и температуры подается в сопловые аппараты турбины, где происходит превращение потенциальной энергии пара в кинетическую энергию потока пара (скорость потока – сверхзвуковая). Кинетическая энергия сверхзвукового потока превращается на лопатках турбины в кинетическую энергию вращения колеса турбины и в работу производства электроэнергии.
На рис. 1 показана одна турбина, на самом деле турбина имеет несколько ступеней расширения пара.
После турбины пар направляется в конденсатор. Это обычный теплообменник, внутри труб проходит охлаждающая вода, снаружи – водяной пар, который конденсируется, вода становится жидкой.
Рис. 1. Принципиальная технологическая схема паросиловой установки.
Эта вода поступает в питательный насос, где происходит увеличение давления до номинальной (проектной) величины.
Далее вода с высоким давлением направляется в котельный агрегат (на рис. 1 он обведен штриховой линией). В этом агрегате вода сначала нагревается до температуры кипения от дымовых газов из топки котла, затем поступает в кипятильные трубы, где происходит фазовое превращение вплоть до состояния сухого насыщенного пара (см. т. 5 на рис. 6.3).
Наконец, сухой насыщенный пар идет в пароперегреватель, обогреваемый топочными дымовыми газами из топки. Состояние пара на выходе из пароперегревателя характеризуется точкой 1. Так замыкается цикл. Этот цикл паросиловой установки предложил немецкий инженер Ренкин, и потому его и назвали циклом Ренкина.
Рассмотрим цикл Ренкина на трех термодинамических диаграммах p – v, T – s, h – s (см. рис. 2).
Нумерация точек совпадает с нумерацией на рис. 1. Процесс 1 – 2 – расширение пара в соплах турбины; 2 – 3 – процесс конденсации пара; 3 – 4 – процесс в питательном насосе;4 – 5 – процесс нагрева воды и ее кипение; 5 – 1 – процесс перегрева пара. Заштрихованы те области диаграмм, площадь которых численно равна работе и теплоте за цикл, причем qц = wц .
Рис. 2. Цикл Ренкина на термодинамических диаграммах
Из технологической схемы на рис. 1 и диаграммы Т – s на рис. 2 следует, что теплота подводится к рабочему телу в процессах 4 – 5 – 1, у которых ds > 0. И эти процессы характеризуются инвариантом p1 = const. Поэтому подводимая в цикле Ренкина теплота qподв равна:
qподв = h1 – h4 . Дж. (6.2)
Теплота отводится от рабочего тела в процессе 2 – 3 (ds < 0) и этот процесс тоже p2 = const. Поэтому
qотв = h2 – h3 . Дж. (1)
Разность между подведенной теплотой и отведенной представляет собой теплоту цикла qц , превращенную в работу wц
wц = qц = (h1 – h4 ) – (h2 – h3 ) = (h1 – h2 ) – (h4 – h3 ).
Разность энтальпии воды до питательного насоса (точка 3) и после (точка 4) ничтожно мала. В связи с этим
wц = qц = h1 – h2 . (2)
Термический коэффициент полезного действия цикла Ренкина (а это отношение «пользы», т.е. wц , к «затратам», т.е qподв ) равен
ηt = (h1 – h2 )/(h1 – h4 ). (3)
Рис. 3. Иллюстрация причины малого КПД цикла Ренкина по сравнению с циклом Карно. Потери работы – заштрихованная площадь. Нумерация точек совпадает с нумерацией на рис. 1 и 2.
Похожие работы
-
Анализ цикла паротурбинной установки
Способы повышения тепловой эффективности паросиловых установок. Основные характеристики паротурбинной установки. Построение диаграммы тепловых и эксергетических потоков в установке. Расчёт параметров точек идеального и действительного циклов ПТУ.
-
Абсолютная и относительная влажность воздуха
Абсолютная и относительная влажность воздуха. Атмосферный воздух всегда содержит некоторое количество влаги в виде паров. Влажность воздуха в помещениях с естественной вентиляцией обуславливается выделением влаги людьми и растениями в процессе дыхания, испарением бытовой влаги при приготовлении пищи, стирке и сушке белья, а также технологической влагой (в производственных помещениях) и влажностью ограждающих конструкций (в первый год эксплуатации зданий).
-
Расчет и анализ идеального цикла ДВС со смешанным подводом теплоты
Молярная масса и массовые теплоемкости газовой смеси. Процесс адиабатного состояния. Параметры рабочего тела в точках цикла. Влияние степени сжатия, повышения давления и изобарного расширения на термический КПД цикла. Процесс отвода теплоты по изохоре.
-
Техническая термодинамика
Определение конечного давления и объема смеси, величины работы и теплоты, участвующих в процессах термодинамики. Анализ КПД цикла Карно. Схема паросиловой установки, описание ее работы. Расчет массового расхода аммиака и мощности привода компрессора.
-
Термодинамический расчет газового цикла
Расчет термодинамического газового цикла. Определение массовых изобарной и изохорной теплоёмкостей. Процессы газового цикла. Изохорный процесс. Уравнение изохоры - v = const. Политропный процесс. Анализ эффективности цикла. Определение работы цикла.
-
Расчет цикла паротурбинных установок
Порядок определения термического коэффициента полезного действия циклов, исследуемой установки брутто. Вычисление удельного расхода тепла, коэффициента практического использования. Относительное увеличение КПД от применения промперегрева и регенерации.
-
Истечение и дросселирование водяного пара. Прямые термодинамические циклы – циклы паротурбинных установок
Задачи и их решения по теме: процессы истечения водяного пара. Дросселирование пара под определенным давлением. Прямой цикл – цикл теплового двигателя. Нагревание и охлаждение. Паротурбинные установки. Холодильные циклы. Эффективность цикла Ренкина.
-
Термодинамика теплофизических свойств воды и водяного пара
Условие и содержание задания Идеальный газ (μ – 18,0 г/моль, к = 1,33) при V изохорно нагревается до T , а затем изотермически до Р . После изобарного и изоэнтропного сжатия рабочее тело возвращается в начальное состояние.
-
Тепловой режим земной коры и источники геотермального тепла
Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Южно-Уральский государственный университет»»
-
Система регенерации на тепловой электростанции
Термодинамические основы регенеративного подогрева питательной воды на тепловой электростанции (ТЭС). Основные преимущества многоступенчатого регенеративного подогрева основного конденсата и питательной воды. Технические особенности системы регенерации.