Название: Линейные электрические цепи
Вид работы: курсовая работа
Рубрика: Физика
Размер файла: 61.69 Kb
Скачать файл: referat.me-340972.docx
Краткое описание работы: Решение задач: линейные электрические цепи постоянного и синусоидального тока и трехфазные электрические цепи синусоидального тока. Метод контурных токов и узловых потенциалов. Условия задач, схемы электрических цепей, поэтапное решение и проверка.
Линейные электрические цепи
Министерство образования Российской Федерации
Государственное образовательное учреждение
высшего профессионального образования
Череповецкий Государственный Университет
Кафедра Электропривода и электротехники
Курсовая работа
по дисциплине «Электротехника и электроника»
Выполнил студент
группы 5 ЭН – 22
Малинин М.С.
Проверил доцент
Кудрявцева А.К.
г. Череповец
2007 г
СОДЕРЖАНИЕ
ВВЕДЕНИЕ. 3
ОСНОВНАЯ ЧАСТЬ. 6
ЗАДАЧА 1. 6
Метод контурных токов. 7
Метод узловых потенциалов. 9
ЗАДАЧА 2. 11
ЗАДАЧА 3. 13
ЗАДАЧА 4. 15
СПИСОК ЛИТЕРАТУРЫ.. 17
ВВЕДЕНИЕ
Полупроводниковый диод, двухэлектродный электронный прибор на основе полупроводникового (ПП) кристалла. Понятие «Полупроводниковый диод» объединяет различные приборы с разными принципами действия, имеющие разнообразное назначение.
В полупроводниковых диодах используется свойство p-n перехода, а также других электрических переходов, а также других электрических переходов хорошо проводить электрический ток в одном направлении и плохо – в противоположном. Эти токи и соответствующие им напряжения между выводами диода называются прямым и обратным токами, прямым и обратным напряжениями.
По способу изготовления различают сплавные диоды, диоды с диффузионной базой и точечные диоды. В диодах двух первых типов переход получается методами сплавления пластин p- и n-типов или диффузии в исходную полупроводниковую пластину примесных атомов. При этом p-n-переход создается на значительной площади (до 1000 мм2). В точечных диодах площадь перехода меньше 0,1 мм2. они применяются главным образом в аппаратуре сверхвысоких частот при значении прямого тока 10 – 20 мА.
По функциональному назначению полупроводниковые диоды делятся на выпрямительные, импульсные, стабилитроны, фотодиоды, светоизлучающие диоды и т.д.
Выпрямительные диоды предназначены для преобразования переменного тока и выполняются по сплавной или диффузионной технологии. Прямой ток диода направлен от анодного А к катодному К выводу. Нагрузочную способность выпрямительного диода определяют: допустимый прямой ток Iпр и соответствующее ему прямое напряжение Uпр, допустимое обратное напряжение Uобр и соответствующий ему обратный ток Iобр, допустимая мощность рассеяния Pрас и допустимая температура окружающей среды (до 50 0С для германиевых и до 140 0С для кремниевых диодов).
Вследствие большой площади p-n-перехода допустимая мощность рассеяния выпрямительных диодов малой мощности с естественным охлаждением достигает 1 Вт при значениях прямого тока до 1 А. Такие диоды часто применяются в цепях автоматики и в приборостроении. У выпрямительных диодов большой мощности с радиаторами и искусственным охлаждением (воздушным или водяным) допустимая мощность рассеяния достигает 10 кВт при значениях допустимых прямого тока до 1000 А и обратного напряжения до 1500 В.
Импульсные диоды предназначены для работы в цепях формирования импульсов напряжения и тока.
Стабилитроны, называемые также опорными диодами, предназначены для стабилизации напряжения. В этих диодах используется явление неразрушающего электрического пробоя (лавинного пробоя) p-n-перехода при определенных значениях обратного напряжения Uобр = Uпроб.
Следует отметить основные причины отличия характеристик реальных диодов от идеализированных. Обратимся к прямой ветви вольт-амперной характеристики диода (u > 0, ί > 0). Она отличается от идеализированной из-за того, что в реальном случае на нее влияют:
· сопротивления слоев полупроводника (особенно базы);
· сопротивления контактов металл-полупроводник.
Важно, что сопротивление базы может существенно зависеть от уровня инжекции (уровень инжекции показывает, как соотносится концентрация инжектированных неосновных носителей в базе на границе перехода с концентрацией основных носителей в базе). Влияние указанных сопротивлений приводит к тому, что напряжение на реальном диоде при заданном токе несколько больше (обычно на доли вольта).
Обратимся к обратной ветви (u < 0, ί < 0). Основные причины того, что реально обратный ток обычно на несколько порядков больше теплового тока ίs, следующие:
· термогенерация носителей непосредственно в области p-n-перехода;
· поверхностные утечки.
Термогенерация в области p-n-перехода оказывает существенное влияние на ток потому, что область перехода обеднена подвижными носителями заряда, и процесс рекомбинации (обратный процессу генерации и в определенном смысле уравновешивающий его) здесь замедлен.
ОСНОВНАЯ ЧАСТЬ
ЗАДАЧА 1 Линейные электрические цепи постоянного тока
Для электрической схемы выполнить следующее:
· Упростить схему, заменив последовательно и параллельно соединенные резисторы четвертой и шестой ветвей эквивалентными, а источники тока преобразовать в источники напряжения. Дальнейший расчет вести для упрощенной схемы.
· Указать на схеме положительное направление токов в ветвях и обозначить эти токи.
· Определить токи во всех ветвях схемы методом контурных токов.
· Определить токи во всех ветвях схемы методом узловых потенциалов.
Метод контурных токов
Дано:
![]() |
R1 = 19,5 Ом E1 = 25,8 В
R2 = 60 Ом E2 = 37,5 В
R3 = 90 Ом E3 = 0 В
R4.1 = 150 Ом I1 = 0,04 А
R4.2 = 600 Ом I2 = 0 А
R5 = 165 Ом I3 = 0 А
R6.1 = 40 Ом R6.2 = 27,5 Ом
Решение:
1. Находим в схеме элементы, соединенные параллельно или последовательно, и заменяем их эквивалентными
R4 = R4.1· R4.2 / (R4.1 + R4.2 ) = 150 · 600 / (150 + 600) = 120 Ом
R6 = R6.1 + R6.2 = 40 + 27,5 = 67,5 Ом
2. Определяем ЭДС
E1’= I1 · R1 =0,04 · 19,5 = 0,78 В
E2’= I2· R2 = 0 · 60 = 0 В
E1*= E1–E1’= 25,8 – 0,78 = 25,02 В
E2*= E2’– E2= 37,5 – 0 = 37,5 В
3. Составляем систему уравнений
I1.1 · (R1 + R5 + R6) – I2.2 · R5 – I3.3 · R6 = E1
I1.1 · R5 + I2.2 · (R2 + R3 + R5) – I3.3 · R3 = – E2
6 – I2.2 · R3 + I3.3 · (R3 + R4 + R6) = 0
Переписываем систему уравнений с числовыми коэффициентами
I1.1 · (19,5 + 165 + 67,5) – I2.2 · 165– I3.3 · 67,5 = 25,02
– I1.1 · 165+ I2.2 · (60 + 90 + 165) – I3.3 · 90= 37,5
I1.1 · 67,5– I2.2 · 90+ I3.3 · (90 + 120+ 67,5) = 0
252 I1.1 – 165 I2.2 – 67,5 I3.3 = 25,02
– 165 I1.1 + 315 I2.2 – 90 I3.3 = 37,5
– 67,5 I1.1 – 90 I2.2 + 277,5 I3.3 = 0
4. Считаем определители системы
252 – 165 – 67,5
Δ = – 165 315 – 90 = 22 027 950 – 1 002 375 – 1 002 375 –
– 67,5 – 90 277,5
– 1 435 218,75 – 2 041 200 – 7 554 937,5 = 8 991 843,75
25,02 – 165 – 67,5
Δ1 = 37,5 315 – 90 = 2 187 060,75 + 2 278 812,5 +
0 – 90 277,5
+ 797 343,75 – 202 662 + 1 717 031,25 = 4 726 586,25
252 25,02 – 67,5
Δ2 = – 165 37,5 – 90 = 2 622 375 + 151 996,5 –
– 67,5 0 277,5
– 170 859,375 + 1 145 603,25 = 3 749 115,375
252 – 165 25,02
Δ3 = – 165 315 37,5 = 371 547 + 417 656,25 + 531 987,75 +
– 67,5 – 90 0
+ 850 500 = 2 171 691
5. Определяем контурные токи
I1.1 = Δ1 / Δ = 0,526
I2.2 = Δ2 / Δ = 0,417
I3.3 = Δ3 / Δ = 0,242
6. Используя II закон Кирхгофа, определяем токи в цепях
ί1 = I1.1 = 0,526 А ί4 = I3.3 = 0,242 А
ί2 = I2.2 = 0,417 А ί5 = I2.2 – I1.1 = – 0,109 А
ί3 = I2.2 – I3.3 = 0,175 А ί6 = I1.1 – I3.3 = 0,284 А
7. Проверка
ί5 + ί1 – ί2 = – 0,109 + 0,526 – 0,417 = 0
ί3 – ί6 – ί5 = 0,175 – 0,284 + 0,109 = 0
ί6 + ί4 – ί1 = 0,284 + 0,242 – 0,526 = 0
ί2 – ί3 – ί4 = 0,417 – 0,175 – 0,242 = 0
Метод узловых потенциалов
Дано:
![]() |
R1 = 19,5 Ом E1 = 25,8 В
R2 = 60 Ом E2 = 37,5 В
R3 = 90 Ом E3 = 0 В
R4.1 = 150 Ом I1 = 0,04 А
R4.2 = 600 Ом I2 = 0 А
R5 = 165 Ом I3 = 0 А
R6.1 = 40 Ом R6.2 = 27,5 Ом
Решение:
1. Определяем собственную проводимость узла, которая равна сумме проводимостей, сходящихся в узле
g1 = 1 / R1 = 0,05 g4 = 1 / R4 = 0,01
g2 = 1 / R2 = 0,02 g5 = 1 / R5 = 0,01
g3 = 1 / R3 = 0,01 g6 = 1 / R6 = 0,01
2. Определяем взаимную проводимость в узле, которая равна проводимости ветви, соединяющей два узла
g1.1 = g4 + g2 + g3 = 0,04 g1.2 = g2.1 = g3 = 0,01
g2.2 = g3 + g5 + g6 = 0,03 g2.3 = g3.2 = g5 = 0,01
g3.3 = g1 + g2 + g5 = 0,08 g1.3 = g3.1 = g2 = 0,02
3. Определяем сумму токов от источников, которые находятся в ветвях, сходящихся в данном узле
I1.1 = – E2 / R2 = – 37,5 / 60 = – 0,625
I2.2 = 0
I3.3 = E1 / R1+ E2 / R2 = 25,02 / 19,5 + 37,5 / 60 = 1,905
4. Записываем в общем виде систему уравнений
u1 · g1.1 – u2 · g1.2 – u3 · g1.3 = I1.1
– u1 · g2.1 + u2 · g2.2 – u3 · g2.3 = I2.2
– u1 · g3.1 – u2 · g3.2 + u3 · g3.3 = I3.3
5. Переписываем систему уравнений с числовыми коэффициентами
0,04 u1 – 0,01 u2 – 0,02 u3 = – 0,63
– 0,01 u1 + 0,03 u2 – 0,01 u3 = 0
– 0,02 u1 – 0,01 u2 + 0,08 u3 = 1,91
6. Считаем определители системы
0,04 – 0,01 – 0,02
Δ = – 0,01 0,03 – 0,01 = 0,000096 – 0,000002 – 0,000002 –
– 0,02 – 0,01 0,08
– 0,000012 – 0,000004 – 0,000008 = 0,000068
– 0,63 – 0,01 – 0,02
Δ1 = 0 0,03 – 0,01 = – 0,001512 + 0,000191 + 0,001146 +
1,91 – 0,01 0,08
+ 0,000063 = – 0,000112
0,04 – 0,63 – 0,02
Δ2 = – 0,01 0 – 0,01 = – 0,000126 + 0,000382 + 0,000764 –
– 0,02 1,91 0,08
– 0,000504 = 0,000516
0,04 – 0,01 – 0,63
Δ3 = 0,01 0,03 0 = 0,002292 – 0,000063 – 0,000378 –
– 0,02 – 0,01 1,91
– 0,000191 = 0,00166
7. Определяем узловые напряжения
U1.1 = Δ1 / Δ = – 1,647 В
U2.2 = Δ2 / Δ = 7,588 В
U3.3 = Δ3 / Δ = 24,412 В
8. Используя II закон Кирхгофа, определяем токи в ветвях
ί1 = (E1 – U3) / R1 = (25,02 – 24,412) / 19,5 = 0,03 А
ί2 = (– E2 – U1 + U3) / R2 = (– 37,5 + 1,647 + 24,412) / 60 = – 0,19 А
ί3 = (U1 – U2) / R3 = (– 1,647 – 7,588) / 90 = – 0,1 А
ί4 = U1 / R4 = – 1,647 / 120 = – 0,01 А
ί5 = (– U3 + U2) / R5 = (– 24,412 + 7,588) / 165 = – 0,1 А
ί6 = U2/ R6 = 7,588 / 67,5 = 0,11 А
9. Проверка
ί5 + ί1 – ί2 = – 0,1 + 0,03+ 0,191 = 0,12
ί3 – ί6 – ί5 = – 0,1 – 0,11 + 0,11 = – 0,11
ί6 + ί4 – ί1 = 0,11 – 0,01 – 0,03 = 0,07
ί2 – ί3 – ί4 = – 0,19+ 0,1 + 0,01 = – 0,08
ЗАДАЧА 2Линейные электрические цепи синусоидального тока
В сеть переменного тока с действующим значением напряжения U включена цепь, состоящая из двух параллельных ветвей. Определить показания приборов, реактивную мощность цепи, коэффициент мощности и построить векторную диаграмму напряжений. Указать на схеме положительное направление токов в ветвях и обозначить эти токи.
Дано:
R1 = 8 Ом
R2 = 2 Ом
U = 127 В
јxc = 17 Ом
Решение:
1. Примем начальную фазу напряжения равной нулю
Ů = 127 е ј0 В
2. Определяем комплексное сопротивление
z 1 = R1 = 8 Ом
z2 = R2 – јxc = √2 2 + 17 2 · е – ј arctg 17/4 = 17,1 е – 77
3. По закону Ома определяем комплексные точки
İ 1 = Ů / z1 = 127 е ј0 / 8 = 15,9 е ј0 А
İ 2 = Ů / z2 = 127 е ј0 / 17,1 е – 77 = 7,4 е ј 77 =
= 7,4 · cos 77 + ј 7,4 · sin 77 = 1,7 + ј 7,2
4. Определяем полный комплексный ток
İ = İ 1 + İ 2 = 15,9 е ј0 + 7,4 е ј 77 = 15,9 cos 0 + ј 15,9 sin 0 +
+ 7,4 cos 77 + ј 7,4 sin 77 = 17,5 + ј 7,2 =
= √17,5 2 + 7,2 2 · е ј arctg 7,23/17,544 = 18,9 · е ј 22
А 18,9 А
А1 15,9 А
А2 7,4 А
5. Определяем полную мощность
S = İ · Ů = 18,9 е ј 22 · 127 е ј0 = 2410,5 е ј 22 =
= 2410,5 cos 22 + ј 2410,5 sin 22 = 2234,9 + ј 902,9
İ = 18,9 · еј 22 S = 2410,5 ВА
P = 2234,9 Вт Q = 902,9 ВАР
6. Определяем коэффициент мощности
cos φ = P / S = 0,93
ЗАДАЧА 3 Линейные электрические цепи синусоидального тока
В цепь переменного тока с мгновенным значением напряжения
U = Umsin ωt промышленной частоты f = 50 Гц включены резистор и конденсатор. Определить показания приборов, реактивную и полную мощность цепи. Построить треугольник напряжений и векторную диаграмму напряжений.
Дано:
R = 2 Ом
Um = 282 В
xc = 17 Ом
Решение:
1. Определяем напряжение на зажимах цепи
U = Um/ √2 = 282 / 1,41 = 200 В
2. Определяем накопленное емкостное сопротивление
– јxc = – ј 17 = 17 е – ј 90
3. Определяем полное комплексное сопротивление цепи z
Z = R – јxc = 2 – ј 17 = √2 2 + 17 2 · е – ј arctg 17/2 = 17,1 е – ј 83
4. Начальную фазу напряжения примем равной нулю
Ů = 200е ј0 В
5. Определяем комплексный ток по закону Ома
İ = Ů / Z = 200 е ј0 / 17,1 е – ј 83 = 11,7 е ј 83
тогда показания амперметра IА = 11,7 А
6. Определяем комплексное напряжение на R
ŮR = I R = 11,7 еј 83 · 2 = 23,4 еј 83 =
= 23,4 cos 83 + ј 23,4 sin 83= 2,9 + ј23,2
7. Определяем напряжение на емкости
Ůc = İ (– ј xc) = 11,7 е ј 83 · 17 е – ј 90 = 198,6 е – ј 7 =
= 198,6 cos 7 – ј 198,6 sin 7 = 197,1 – ј 24,2
тогда показания вольтметра Uc = 198,6 В
8. Определяем полную комплексную мощность цепи
Ŝ = I* · Ů = 11,7 е -ј 83 · 200 е ј0 = 2336 е -ј 83 =
= 2336 cos 83 – ј 2336 sin 83 = 284,7 – ј 2318,6
S = 2336 ВА
P = 284,7Вт Q = 2318,6 ВАР
9. Определяем показатель фазометра
φ = φu – φί = 0 – 83 = – 83
тогда показания фазометра cos φ = cos (– 83) = 0,12
ЗАДАЧА 4Трехфазные электрические цепи синусоидального тока
В трехфазную сеть с линейным напряжением Uл (действующее значение напряжения) по схеме «треугольник/треугольник» включены активно-индуктивные приемники. Определить фазные и линейные токи в нагрузке, активную мощность всей цепи и каждой фазы отдельно.
Дано:
RАВ = 8 Ом Uл = 127 В XСА = 3 Ом RСА = 2 Ом
RВС = 3 Ом XАВ = 6 Ом XВC= 17 Ом
Решение:
1. Т. к. рассматриваем соединение «треугольник/треугольник», то
Uп = Uдо
ŮАВ = 127 е ј 0
ŮВС = 127 е – ј 120
ŮСА = 127 е ј 120
2. Определяем комплексное полное сопротивление фаз
zАВ = RАВ + ј xАВ = 8 + ј 6 = √82 + 62 · е ј arctg 6/8 = 10 е ј37
zВC = RВC + ј xВC= 3 + ј 17 = √32 + 172 · е ј arctg 17/3 = 17,3 е ј80
zCА = RСА + ј xСА = 2 + ј 3 = √22 + 32 · е ј arctg 3/2 = 3,6 е ј56
3. Определяем комплексные фазные токи
Iф = Uф / zф
İАВ = 127 е ј 0 / 10 е ј37 = 12,7 е -ј37
İВС = 127 е -ј 120 / 17,3 е ј80 = 7,3 е -ј200
İСА = 127 е ј 120 / 3,6 е ј56 = 35,3 е ј64
4. Определим сопряженные комплексные токи фаз:
İАВ* = 12,7 е ј37
İВС* = 7,3 е ј200
İСА* =35,3е -ј64
5. Определяем комплексные полные мощности фаз
S = IФ* · UФ
SАВ = 12,7 е ј37 · 127 е ј 0 = 1612,9 е ј37 = 1612,9 cos 37 + ј 1612,9 sin 37 = 1288,1 + ј 970,7
SВC = 7,3 е ј200 · 127 е – ј 120 = 927,1 е -ј80 =
= 927,1 cos 80 – ј 927,1 sin80 = 161 – ј 913
SCА = 35,3 е -ј64 · 127 е ј 120 = 4483,1 е ј56 = 4483,1 cos56 + ј 4483,1 sin56 =
= 2506,9 + ј 3716,7
6. Определяем активную мощность фаз
PАВ = 1288,1 Вт
PВC = 161 Вт
PCА = 2506,9 Вт
7. Определяем активную мощность цепи
Pц = PАВ + PВC + PCА = 3956 Вт
СПИСОК ЛИТЕРАТУРЫ
1. Касаткин А. С., М. В. Немцов «Электротехника»: М., Академия, 2005.
2. Методические указания к выполнению контрольной работы по дисциплине «Общая электротехника и электроника» для студентов заочной формы обучения.
3. Лачин В.И., Н.С. Савёлов «Электроника»: М., Феникс, 2002.
4. Лекции по дисциплине «Общая электротехника и электроника».
Похожие работы
-
Расчёт электрических цепей
ЗАДАНИЕ № 1 ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА В соответствии с вариантом, заданным двумя последними цифрами шифра, указанного в зачетной книжке, выписать из табл. 1.1 и 1.2 условия задачи и выполнить следующее:
-
Методы расчета цепей постоянного тока
Разветвленная цепь с одним источником электроэнергии. Определение количества уравнений, необходимое и достаточное для определения токов во всех ветвях схемы по законам Кирхгофа. Метод контурных токов. Символический расчет цепи синусоидального тока.
-
Расчёт сложных электрических цепей постоянного тока с использованием закона Кирхгофа
Практические рекомендации по расчету сложных электрических цепей постоянного тока методами наложения токов и контурных токов. Особенности составления баланса мощностей для электрической схемы. Методика расчета реальных токов в ветвях электрической цепи.
-
Анализ линейных электрических цепей
Определение тока методом эквивалентного генератора в ветвях цепи. "Базовая" частота, коэффициент, задающий ее значение в источниках. Расчет электрической цепи без учета взаимно индуктивных связей в ветвях, методом узловых напряжений и контурных токов.
-
Курсовая работа
Исследование сложной электрической цепи постоянного тока методом узловых потенциалов. R1=130 Ом R2=150 Ом R3=180 Oм R4=110 Oм R5=220 Oм R6=75 Oм R7=150 Oм
-
Линейные электрические цепи постоянного и синусоидального тока
Методика и основные этапы определения токов всех ветвей схемы, используя МКТ, МУП, а также тока в выделенной ветви, используя МЭГi, МЭГu. Порядок проверки баланса мощностей. Схемы в EWB или Ms для измерения токов ветвей, напряжений на элементах.
-
Анализ электрического состояния однофазных и трехфазных цепей
Анализ однофазных электрических цепей, определение мгновенных значений токов при наличии и отсутствии индуктивно связанных элементов. Построение векторно-топографических и круговых диаграмм, проверка энергетического баланса мощностей, оценка погрешности.
-
Расчет цепей постоянного тока
Составление по данной схеме на основании законов Кирхгофа уравнений, необходимых для определения всех токов. Определение токов всех ветвей методом контурных токов. Расчет потенциалов узлов, построение графика зависимости мощности, выделяемой на резисторе.
-
Расчет электрических цепей постоянного тока
Федеральное агентство по образованию Федеральное государственное образовательное учреждение Высшего профессионального образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»
-
Расчет параметров электрических цепей постоянного тока средствами EXCEL
1. Исходные данные Рисунок 1 - Исходная схема 2В Таблица 1 - Данные для расчета Параметры цепи Порядок расчета цепи постоянного тока: 1. Преобразовать исходную схему до двухконтурной, заменив треугольник сопротивлений эквивалентной звездой.