Referat.me

Название: Методы расчета цепей постоянного тока

Вид работы: контрольная работа

Рубрика: Физика

Размер файла: 59.71 Kb

Скачать файл: referat.me-342982.docx

Краткое описание работы: Разветвленная цепь с одним источником электроэнергии. Определение количества уравнений, необходимое и достаточное для определения токов во всех ветвях схемы по законам Кирхгофа. Метод контурных токов. Символический расчет цепи синусоидального тока.

Методы расчета цепей постоянного тока

Содержание

ЗАДАНИЕ 1. 3

МЕТОДЫ РАСЧЕТА ЦЕПЕЙ ПОСТОЯННОГО ТОКА.. 3

Задача 1. 3

Задача 2. 4

Задача 3b. 5

ЗАДАНИЕ 3. 7

СИМВОЛИЧЕСКИЙ РАСЧЕТ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА 7

Задача 1. 7

ЗАДАНИЕ 1

МЕТОДЫ РАСЧЕТА ЦЕПЕЙ ПОСТОЯННОГО ТОКА

Задача 1

Расчет разветвленной цепи с одним источником электроэнергии. По данным табл.1, 2,3 определить ток в неразветвленной части цепи и ветви, указанной в таблице 1

Дано: ветви, сопротивления

которых равны ¥

(разрыв цепи) – 10,13,15,17

Ветви, сопротивления

которых равны нулю

(к.з. ветви) – 5,6,12

Ветвь, в которой

следует определить ток – 8

U=220 В, r=6,8 Ом

Решение

Для определения тока в неразветвленной части цепи воспользуемся методом эквивалентных преобразований, «сворачивая» схему.

1)

2) Ом

3) 6,8 Ом

4) 5,83 Ом

5) Ом

6) Ом

В результате всех преобразований получили схему:

По закону Ома:

32,64 А

Далее находим ток в указанной ветви – ветви 8.

Для этого разворачиваем схему:

Согласно схеме ток в ветви № 8 равен:

Задача 2

По данным табл. 4 определить количество уравнений, необходимое и достаточное для определения токов во всех ветвях схемы по законам Кирхгофа. Составить эти уравнения в общем виде.

Дано: Цепь не содержит ветвей 2,3,5,8

Решение

Количество уравнений, необходимое и достаточное для определения токов в ветвях должно равняться количеству ветвей схемы.

Для данного случая число уравнений равно 4.

Для узла «а»:

Для узла «b»:

Для контура I:

Для контура II:

Составляем систему уравнений:

Задача 3 b

Пользуясь методом контурных токов, определить значения и направления всех токов в ветвях схемы по данным табл. 5,6,7. Составить численный баланс мощностей.

Дано: Цепь не содержит ветвей 2,3,5,8

R1 = 18Ом, R4 = 28Ом,R6 = 20Ом,

R7 = 38Ом, R9 = 20Ом, R10 = 60Ом,

Е1 = 70В, Е2 = 50В,Е3 = 30В,Е4 = 70В,

Е5 = 120В, Е6 = 60В, Е7 = 80В, Е8 = 90В,

Е9 = 130В, Е10 = 45В, U2 = 200В

Решение

Составляем уравнения для трех контуров:

Подставляем числовые значения сопротивлений и э.д.с.

После упрощения получили:

Решив полученную систему уравнений, получили:

=-0,013841А, =-0,183391А, =-2,249827 А.

Задаемся произвольными положительными направлениями токов, действующих в ветвях, и определяем их как алгебраическую сумму контурных токов. При этом если направление контурного тока и тока, действующего в ветви, совпадают, то при суммировании такой контурный ток следует брать со знаком «плюс», в противном случае – со знаком «минус». Если в ветви протекает только один контурный ток, то действующий в ветви ток будет равен контурному:

Составляем баланс мощности

227,0485=229,3138

ЗАДАНИЕ 3

СИМВОЛИЧЕСКИЙ РАСЧЕТ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

Задача 1

По данным табл. 9,10,11 рассчитать токи в ветвях заданной цепи при f = 50 Гц. Используя данные расчета, записать мгновенное значение указанной в табл. 9 величины. Составить баланс мощностей. В масштабе построить топографическую диаграмму.

Дано: Цепь не содержит элементов L2 , C1 .

U=100B, Yu = 700 ,

r1 = 10Ом, r2 = 10Ом,R3 = 5,6Ом,

L1 = 8,7 мГн, L3 = 47,8 мГн,

C2 =120мкФ, C3 =318 мкФ

Решение

1.Определяем реактивные сопротивления ветвей:

2. Определяем полные сопротивления ветвей:

Определяем комплексное сопротивление всей цепи:

Записываем приложенное напряжение в комплексной форме и определяем ток I1 в неразветвленной части цепи:

А

Определяем напряжение на разветвленном участке цепи «ас»

Определяем токи в остальных ветвях:

А

А

Записываем мгновенное значение напряжения иL 1 по его комплексному действующему значению

В

Комплексная амплитуда напряжения

В

иL 1 =

Комплексную мощность всей цепи определяем как

В*А

По закону сохранения энергии активная мощность всей цепи равна сумме активных мощностей всех n активных сопротивлений, входящих в цепь:

Вт

По закону сохранения энергии реактивная мощность всей цепи равна алгебраической сумме мощностей всех m реактивных сопротивлений, входящих в цепь.

Баланс активных и реактивных мощностей сходится:

Топографическая диаграмма – это векторная диаграмма цепи, в которой каждой точке электрической схемы соответствует точка на топографической диаграмме. Это достигается тем, что векторы напряжений на отдельных элементах схемы строятся в той последовательности, в которой они расположены в схеме (обходим схему в направлении тока).

Для построения топографической диаграммы определяем напряжения на всех элементах цепи.

Выбираем масштабы по току и напряжению:

1В=1мм

1А = 1см.

Похожие работы

  • Расчет сложных электрических цепей гармонического тока

    МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ КУРСОВАЯ РАБОТА по дисциплине Теоретические основы электротехники Тема Расчет сложных электрических цепей гармонического тока

  • Расчет цепей постоянного тока 2

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ СУМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра электротехники Расчетно-графическая работа №1 по курсу ТОЭ

  • Расчёт сложных электрических цепей постоянного тока с использованием закона Кирхгофа

    Практические рекомендации по расчету сложных электрических цепей постоянного тока методами наложения токов и контурных токов. Особенности составления баланса мощностей для электрической схемы. Методика расчета реальных токов в ветвях электрической цепи.

  • Изображение токов и напряжений комплексными числами

    Связь комплексных амплитуд тока и напряжения в пассивных элементах электрической цепи. Законы Кирхгофа для токов и напряжений, представленных комплексными амплитудами. Применение при расчёте трёхфазных цепей.

  • Анализ линейных электрических цепей

    Определение тока методом эквивалентного генератора в ветвях цепи. "Базовая" частота, коэффициент, задающий ее значение в источниках. Расчет электрической цепи без учета взаимно индуктивных связей в ветвях, методом узловых напряжений и контурных токов.

  • Расчет цепей постоянного тока

    Составление по данной схеме на основании законов Кирхгофа уравнений, необходимых для определения всех токов. Определение токов всех ветвей методом контурных токов. Расчет потенциалов узлов, построение графика зависимости мощности, выделяемой на резисторе.

  • Расчет электрических цепей постоянного тока

    Федеральное агентство по образованию Федеральное государственное образовательное учреждение Высшего профессионального образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

  • Расчет параметров электрических цепей постоянного тока средствами EXCEL

    1. Исходные данные Рисунок 1 - Исходная схема 2В Таблица 1 - Данные для расчета Параметры цепи Порядок расчета цепи постоянного тока: 1. Преобразовать исходную схему до двухконтурной, заменив треугольник сопротивлений эквивалентной звездой.

  • Расчет параметров электрической цепи

    Составление на основе законов Кирхгофа системы уравнений для расчета токов в ветвях схемы. Определение токов во всех ветвях схемы методом контурных токов. Расчет системы уравнений методом определителей. Определение тока методом эквивалентного генератора.

  • Расчет параметров электрических схем

    Расчет заданной схемы по законам Кирхгофа. Определение токов в ветвях методом контурных токов. Уравнение баланса мощностей, проверка его подстановкой числовых значений. Комплексные действующие значения токов в ветвях схемы. Построение векторных диаграмм.