Referat.me

Название: Периодическая система материи

Вид работы: реферат

Рубрика: Физика

Размер файла: 73.43 Kb

Скачать файл: referat.me-340995.docx

Краткое описание работы: Проблемы теории суперструн. Периодическая система измерения физических величин, расчет их размерности на основании "пи-теоремы". Зависимость между физическими величинами с точностью до постоянного безразмерного множителя, ее соответствие законам физики.

Периодическая система материи

В последние два столетия в науке происходило бурное размежевание научных дисциплин. В физике помимо классической механики Ньютона появились электродинамика, термодинамика, ядерная физика, физика различных агрегатных состояний, специальная и общая теории относительности, квантовая механика и многое другое. Произошла узкая специализация. Физики перестали понимать друг друга. Теорию суперструн, например, понимают лишь насколько сот человек во всем мире. Чтобы профессионально разбираться в теории суперструн, нужно заниматься только теорией суперструн, на остальное просто не хватит времени.

Не следует однако забывать, что столь разные научные дисциплины изучают одну и ту же физическую реальность - материю. Наука, а особенно физика, вплотную подошла к тому рубежу, когда дальнейшее развитие возможно только на путях интегрирования (синтеза) различных научных направлений.

Рассмотрим периодическую систему измерения физических величин (-систему) - первый шаг в этом направлении. В отличие от международной системы единиц СИ, имеющей 7 основных и 2 дополнительные единицы измерения, в периодической системе единиц измерения используется одна единица - метр. Переход к размерностям периодической системы измерения осуществляется по правилам:

,

Где: L , T и М - размерности длины, времени и массы соответственно в системе СИ.

Размерности всех остальных физических величин установлены на основании так называемой "пи-теоремы", утверждающей, что любая верная зависимость между физическими величинами с точностью до постоянного безразмерного множителя соответствует какому-либо физическому закону. Результаты расчета для всех основных, вспомогательных и части производных единиц системы СИ представлены в таблице.

- система обладает рядом замечательных свойств. Например, физические величины образуют цикл, в котором (энергия) замыкается на (абсолютное ньютоново время), поэтому энергия и ньютоново время - физические синонимы. На время, как носитель энергии впервые еще в середине прошлого века указал Козырев Н.А.

- система позволяет проводить неожиданные физические параллели. Так механическая сила, постоянная Планка, электрическое напряжение и энтропия имеют одинаковую размерность: , а это означает, что законы механики, квантовой механики, электродинамики и термодинамики - инвариантны.

Например, второй закон Ньютона и закон Ома для участка электрической цепи имеют одинаковую формальную запись:

~ ~

~ ~

В химии тоже существуют циклы, связанные с числом 7. В атомах различают до 7 электронных оболочек K , L , M , N , O , P , Q и до 7 подуровней оболочек s , p , d , f , h , i . До последнего времени загадка числа 7 оставалась неразгаданной. Объяснение нашлось в - системе. В L - системе нет физических величин с размерностью более 7. Связано это с тем, что физика изучает либо замкнутые системы, и тогда выполняется закон сохранения энергии , либо открытые системы, и тогда взаимодействие оценивается мощностью ~.

Существенное влияние на химические свойства атомов оказывают первые 4 подуровня s , p , d , f , определяющие форму электронных облаков (см. рис).

Количество химических элементов в цикле:

Где: - порядковый номер цикла.

Так как - это сумма ряда нечетных чисел 1, 3, 5, 7 …, то максимальное количество химических элементов системы равно

и оно опять связано с числом 7 в ряде нечетных чисел.

Известно, что Д.И. Менделеев считал, что периодическая система химических элементов должна начинаться с нулевого ряда и с нулевой группы, а не с первого ряда и с первой группы. В этом случае в начале таблицы находилось место для двух дополнительных элементов, которые ученый предложил назвать "ньютонием" и "коронием".

Если под номером 0 в первом цикле поместить ньютоний, а под номером 1 - короний, то под номером 3 окажется водород. Если вспомнить теперь, что номер в периодической системе соответствует элементарному заряду (1 = 3/3), то легко установить, что у ньютония заряд равен нулю, у корония - 1/3 (как у и кварков), а у элемента, занимающее место перед водородом - 2/3 (как у кварка). Таким образом, нам удалось установить место кварков в периодической системе.

Исключив из таблицы кварки и присвоив водороду первый порядковый номер, приходим к выводу, что количество химических элементов периодической системы не может быть больше, чем 118.

Менделеев отождествлял ньютоний с эфиром, который у него был похож скорее на физический вакуум Дирака.

Коронием должна начинаться и коронием должна заканчиваться периодическая система элементов материи. Д.И. Менделеев утверждал, что "… периодическому закону - будущее не грозит разрушением, а только надстройки и развитие обещает ". Спустя 100 лет мы можем констатировать, что ученый не ошибся.

Обозначе-ние Наименование физической величины Размер-ность
Постоянная электрическая.
Емкость электрическая.
Проводимость электрическая.
Магнитное сопротивление.
Время, плотность эл. заряда поверхностная, заряд удельный.
Абсолютное ньютоново пространство и время, плоский угол, телесный угол, плотность эл. заряда линейная, плотность эл тока.
Длина, эл заряд, термодинамическая температура, частота, угловая скорость, напряженность магнитного поля, магнитная постоянная, намагниченность
Масса, сила эл тока, количество вещества, площадь, скорость, угловое ускорение, динамическая вязкость, магнитодвижущая сила, индуктивность, магнитная индукция.
Объем, ускорение, давление, кинематическая вязкость, теплоемкость удельная, освещенность, гравитационная постоянная, эл. сопротивление.
Момент инерции, импульс, поверхностное натяжение, теплопроводность, магнитный момент эл. тока, поток магнитный, спектральная плотность энергетической светимости.
Сила, сила света, момент импульса, энергетическая яркость, энтропия, постоянная Планка, постоянная Больцмана, эл. напряжение.
Работа, энергия, количество теплоты, момент силы.
Мощность.

Периодическая система элементов материи

Похожие работы

  • Основные теоремы теории электрических цепей

    Основные понятия топологии электрических цепей. Теоремы замещения и Теллегена. Баланс мощности и принцип дуальности. Узел как место соединения зажимов двух и более элементов. Выполнение закона Кирхгофа. Ветвь как часть цепи, которая включена между узлами.

  • Изучение прямолинейного движения тел на машине Атвуда 3

    Федеральное Агентство по образованию ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР) Кафедра физики ОТЧЕТ Лабораторная работа по курсу "Общая физика"

  • Закон Ома 2

    Федеральное агентство по образованию Ухтинский государственный технический университет Кафедра электрификации и автоматизации технологических процессов

  • Инвариантность физических законов

    Общая характеристика и главные отличия периодической системы измерения величин и системы единиц СИ. Примеры, способы и формулы перехода от размерностей международной системы (СИ) к размерностям периодической системы (АС) измерения физических величин.

  • Абсолютная система измерения физических величин

    Сравнительная характеристика абсолютной и международной систем единиц СИ. Сравнение формальной записи второго закона Ньютона и закона Ома для участка электрической цепи. Понятие инвариантности законов электродинамики, термодинамики и квантовой механики.

  • Суперструны и м-теория

    Московский институт криптографии, связи и информатики Кафедра физики РЕФЕРАТ Слушателя 1-го курса факультета ИБ Горбенко Константина Павловича По теме:

  • Принцип неопределенности

    ПРИНЦИП НЕОПРЕДЕЛЁННОСТИ: Принцип неопределённости – фундаментальное положение квантовой теории, утверждающее, что любая физическая система не может находиться в состояниях, в которых координаты её центра инерции и импульс одновременно принимают вполне определённые, точные значения. Количественно принцип неопределённости формулируется следующим образом.

  • Определение величин по теоретической механике

    Определение поступательного и вращательного движения твердого тела. Кинематический анализ плоского механизма. Применение теоремы об изменении кинетической энергии к изучению движения механической системы. Применение общего управления динамики к движению.

  • Макс Планк

    Учеба в Мюнхенском университете. 1900г. - Планк положил начало квантовой теории. 1918 г. - присуждение Нобелевской премии. Вывод закона распределения энергии абсолютно черного тела. Исследования в области термодинамики. 1933г. "Пути познания в физике".

  • Изучение измерительных приборов. Оценка погрешностей измерений физических величин

    Прямые и косвенные виды измерения физических величин. Абсолютная, относительная, систематическая, случайная и средняя арифметическая погрешности, среднеквадратичное отклонение результата. Оценка погрешности при вычислениях, произведенных штангенциркулем.