Название: Полупроводниковые микросхемы. Векторная диаграмма электрической цепи. Однополупериодный выпрямитель
Вид работы: контрольная работа
Рубрика: Физика
Размер файла: 115.62 Kb
Скачать файл: referat.me-341350.docx
Краткое описание работы: Универсальный элемент полупроводниковой монокристаллической микросхемы, p-n-переходы. Построение векторной диаграммы электрической цепи, определение тока в нулевом проводе. Схема однополупериодного выпрямителя для питания потребителя постоянным током.
Полупроводниковые микросхемы. Векторная диаграмма электрической цепи. Однополупериодный выпрямитель
Контрольная работа № 2
Электротехника
Вариант № 49
Задание 1
Вопрос 49. Элементы полупроводниковых схем и их соединение
Ответ
Универсальным элементом монокристаллической микросхемы служит р-n-переход, являющийся слоем, изолирующим микрообласти, сформированные в кристалле.
Этот переход может выполнять роль вентиля (диода). Структуры из нескольких р-n-переходов служат транзисторами, тиристорами и другими активными элементами. Запертый обратным постоянным напряжением p-n-переход выполняет роль конденсатора. Обратное сопротивление p-n-перехода играет роль высокоомного резистора. Для получения резисторов с сопротивлением в сотни кило-ом используют входные клеммы эмиттерных повторителей, собранных на р-n-переходах. В качестве небольших сопротивлений используют просто участки полупроводникового, от которого сделаны контактные выводы.
Определенные трудности связаны с получением индуктивных катушек, поэтому монокристаллические микросхемы обычно проектируют без них.
Многослойные структуры с несколькими p-n-переходами получают, повторяя процессы окисления, формирование маски, диффузии донорных или акцепторных примесей в микрообласти. Пример многослойной структуры приведен на рис. 1.
Рис.1. Многослойная структура с тремя p-n-переходами
Сложные микросхемы требуют многократного снятия и повторного нанесения новой маски методом фотолитографии. Смена масок может осуществляться до полутора десятков раз. При этом важную проблему составляет совмещение масок в соответствии с топологией схемы. На рис. 2 приведена часть полупроводниковой микросхемы, представляющая собой однокаскадный усилитель на транзисторе.
Рис.2. Структура части полупроводниковой ИМС
Сформированную планарную структуру покрывают пленкой оксида кремния, в которой вытравливают окна для напыления алюминиевых или золотых контактов.
Достаточно сложные схемы не удается выполнить без пересечения токопроводящих дорожек. В этих случаях, а также для повышения компактности схемы соединения напыляют в два слоя и более, разделенных изолирующими пленками. Кроме внутриэлементных соединений напыляют стандартизованные по размерам контактные площадки для подвода питания, входных и выходных сигналов.
Полностью сформированные и испытанные на отсутствие брака интегральные микросхемы крепят на керамическом основании корпуса, имеющего внешние выводы. Контактные площадки соединяют с внешними выводами с помощью тончайших золотых проволочек. Для повышения прочности соединения и уменьшения переходного сопротивления между контактной площадкой и проволочкой применяют термокомпрессионную (нагрев и давление) или ультразвуковую сварку.
После выполнения проволочных соединений схемы герметизируют, заливая компаундами на основе эпоксидных или кремнийорганических смол.
Корпуса интегральных микросхем изготовляют из металлических сплавов, стекла, керамики и различных пластмасс, обладающих механической и электрической прочностью, коррозионной стойкостью и не вызывающих химического загрязнения кристалла микросхемы.
Задание 2
Три группы сопротивлений соединили звездой или треугольником и включили в трехфазную сеть переменного тока. Построить в масштабе векторную диаграмму цепи, из которой определить ток в нулевом проводе (при соединении звездой) или линейные токи (при соединении треугольником).
Числовые значения электрических величин, нужные для решения задачи, даны в таблице 4, а схемы на рис.22.
Таблица 4
Номер варианта | Номер схемы на рис.22 |
Ом |
Ом |
Ом |
Ом |
Ом |
Дополнительные величины |
49 | IX | 12 | 10 | 16 | 20 | 8 | ![]() |
Решение
1. Определяем полные сопротивления фаз и углы сдвига:
Ом;
Ом;
Ом.
;
;
.
Поскольку реактивное сопротивление в трех фазах носит индуктивный характер, то ток будет отставать от напряжения на величину найденных углов.
2. Реактивное мощность определяется по формуле
,
откуда находим фазный ток
А.
Находим фазное напряжение
В.
Принимаем стандартное значение
В.
Таким образом,
В.
Находим неизвестные фазные токи
А;
А
3. Для построения векторной диаграммы выбираем масштабы по току: 1см – 2 А, по напряжению: 1 см – 20 В. Построение диаграммы начинаем с векторов фазных напряжений ,
и
, располагая их под углом 120° друг относительно друга. Ток
отстает от напряжения
на угол
, ток
отстает от напряжения
на угол
, а ток
отстает от напряжения
на угол
(рис.3).
Ток в нулевом проводе равен геометрической сумме трех фазных токов, то есть
.
Изменяя длину вектора , которая оказалась равной 4 см, находим ток в нулевом проводе
А.
Рис.3. Векторная диаграмма напряжений и токов
Задание 3
Для питания потребителя постоянным током составить схему однополупериодного выпрямителя, используя стандартные диоды, параметры которых приведены в таблице 1.
Мощность потребителя и напряжения питания
даны в таблице 5 и 6.
Таблица 6
Номер варианта | Тип диода | ![]() |
![]() |
49 | Д215Б | 60 | 100 |
Решение
1. Выписываем из табл.1 Методических указаний выписываем параметры диода Д304:
Тип диода | ![]() |
![]() |
Д215Б | 2 | 200 |
2. Определяем ток потребителя
А.
3. Определяем напряжение, действующее на диод в непроводящий период для однополупериодной схемы выпрямителя:
В.
4. Проверяем диод по параметрам и
. Для однополупериодной схемы диод должен удовлетворять условиям
;
;
;
.
В данном случае первое условие выполняется, а второе условие не соблюдается, то есть . Чтобы выполнялось условие
, необходимо два диода соединить последовательно, тогда будем иметь
В.
Полная схема выпрямителя показана на рис.4.
Рис.4. Схема однофазного однополупериодного выпрямителя
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Дубовницкий С.К. Методические указания по изучению дисциплины «Электротехника с основами электроники». Пинск, 2000.
2. Китунович Ф.Г. Электротехника. Мн.: Вышэйшая школа, 1991.
3. Березкина Т.Ф. и др. Задачник по общей электротехнике с основами электроники. М.: Высшая школа, 1991.
Похожие работы
-
Построение потенциальной диаграммы
Порядок сборки заданной электрической цепи, методика измерения потенциалов всех точек данной цепи. Определение силы тока по закону Ома, его направления в схемах. Построение для каждой схемы потенциальной диаграммы по соответствующим данным расчета.
-
Курсовая работа
Исследование сложной электрической цепи постоянного тока методом узловых потенциалов. R1=130 Ом R2=150 Ом R3=180 Oм R4=110 Oм R5=220 Oм R6=75 Oм R7=150 Oм
-
Исследование трехфазной электрической цепи при соединении нагрузки звездой
Передача электрической энергии от источника к потребителю в трехфазной трехпроводной системе с помощью линейных приводов. Второй закон Кирхгофа. Схемы соединения звездой трехфазного потребителя. Определение фазного тока потребителя по закону Ома.
-
Исследование трехфазной цепи при соединении электроприемников звездой
Трехфазная система при соединении фаз звездой. Особенности построения векторных диаграмм при симметричной и несимметричной нагрузке фаз. Ток в нейтральном проводе при симметричной нагрузке. Мощность трёхфазного приёмника при симметричной нагрузке.
-
Расчет трехфазных цепей
Схема замещения электрической цепи и положительные направления токов линий и фаз. Баланс мощностей для рассчитанной фазы. Активная, реактивная и полная мощность 3-х фазной цепи. Соотношения между линейными и фазными величинами в симметричной системе.
-
Исследование электрической цепи переменного тока с активным и индуктивным сопротивлением
Изучение неразветвленной цепи переменного тока. Особенности построения векторных диаграмм. Определение фазового сдвига векторов напряжения на активном и индуктивном сопротивлении. Построение векторной диаграммы и треугольников сопротивления и мощностей.
-
Исследование электрической цепи переменного тока с активным и емкостным сопротивлением
Изучение неразветвленной цепи переменного тока, построение векторных диаграмм. Определение фазового сдвига векторов напряжений на активном и емкостном сопротивлении. Подключение к генератору трёхфазного напряжения и подача синусоидального напряжения.
-
Исследование цепи однофазного синусоидального напряжения с параллельным соединением приемников
Министерство образования Российской Федерации Пермский Государственный Технический Университет Кафедра электротехники и электромеханики Лабораторная работа
-
Выпрямители электрического тока
Выпрямитель электрического тока — преобразователь электрической энергии ; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования
-
Расчет линейных электрических цепей переменного тока
Расчёт неразветвлённой цепи с помощью векторных диаграмм, разветвлённой цепи с помощью векторных диаграмм. Расчет ложных цепей переменного тока символическим методом, трёхфазной цепи при соединении приемника в звезду, неразветвлённой цепи.