Referat.me

Название: Законы сохранения энергии и момента импульса

Вид работы: контрольная работа

Рубрика: Физика

Размер файла: 51.37 Kb

Скачать файл: referat.me-341641.docx

Краткое описание работы: СОДЕРЖАНИЕ Раздел 1. Краткие сведения теоретического характера Раздел 2. Расчетная часть Раздел 1. Краткие сведения теоретического характера ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ И МОМЕНТА ИМПУЛЬСА

Законы сохранения энергии и момента импульса

СОДЕРЖАНИЕ

Раздел 1. Краткие сведения теоретического характера

Раздел 2. Расчетная часть

Раздел 1. Краткие сведения теоретического характера

ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ И МОМЕНТА ИМПУЛЬСА

Импульсом тела или количеством движения называют произведение массы тела на его скорость. P – векторная величина. Направление импульса тела совпадает с направлением скорости оси и равно нулю, момент импульса системы относительно этой же оси остается постоянным.

Любая частица обладает моментом импульса, независимо от формы траектории по которой она движется Момент импульса замкнутой системы относительно любой неподвижной точки не изменяется с течением времени

ЗАКОН СОХРАНЕНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ

Для того чтобы решить данную задачу, необходимо использовать закон сохранения механической энергии, который гласит: Полная механическая энергия системы материальных точек, находящаяся под действием только консервативных сил, остается постоянной.

E = K + Пвнутр + Пвнеш = const , где

К – полная кинетическая энергия системы

Пвнутр ­ – полная внутренняя потенциальная энергия системы

Пвнешн – полная потенциальная энергия системы в поле внешних консервативных сил

При скольжении тела по гладкой сфере сила трения не действует, сохраняется его полная механическая энергия, что позволяет определить скорость тела в любой точке траектории. В основе закона сохранения энергии лежит однородность времени, т.е. равнозначность всех моментов времени. По мере движения тела его кинетическая энергия увеличивается, а потенциальная энергия уменьшается.

Кинетической энергией системы называется энергия механического движения этой системы.

Потенциальная энергия тела в поле сил тяжестиП (h) = mgh

Если на материальную точку действуют одновременно несколько сил, то каждая из них сообщает материальной точке ускорение согласно второму закону Ньютона, не зависящее от других сил.

Ускорение, приобретаемое материальной точкой, совпадает по направлению с действующей на нее силой и равно отношению этой силы к массе материальной точки.

Раздел 2. Расчетная часть

С вершины гладкой сферы радиуса R соскальзывает небольшое тело массой m. Следует определить

1. На какой высоте H от основания полусферы тело оторвется от ее поверхности?

2. Изменение величины потенциальной энергии ΔΠ тела за время его движения от верщины полусферы до точки отрыва?

M = 30

R = 0,6

По мере движения тела по поверхности сферы его скорость увеличивается, а сила нормального давления на сферу со стороны тела уменьшается. Когда сила нормального давления обратится в нуль, тело оторвется от поверхности.

При скольжении тела по гладкой сфере сохраняется его полная механическая энергия, это позволит определить скорость тела в любой точке траектории

Второй закон Ньютона для тела имеет вид

Условие отрыва тела от поверхности

Примем за нулевой уровень потенциальной энергии тела центр 0 сферы. Тогда закон сохранения энергии для тела принимает вид

Принимая во внимание, что тело движется по окружности и подставив значение силы реакции в точке отрыва во второй закон Ньютона спроецируем полученное уравнение на радиальное направление

Подставим в полученное уравнение найденную из закона сохранения энергии скорость тела, определим угол , при котором произойдет отрыв, а затем и высоту, на которой он произойдет

Следовательно

Подставим найденное значение скорости в уравнение второго закона Ньютона, получим

далее получится ,

Следовательно

Находим высоту (отсчитываемую от центра сферы) на которой произойдет отрыв тела от поверхности

Изменение величины потенциальной энергии тела за время его движения от вершины полусферы до точки отрыва

где

П1 – потенциальная энергия в начале движения

П2 – потенциальная энергия в точке отрыва

Ответ:

1.На высоте H = 0,4м от основания полусферы тело оторвется от ее поверхности

2.Изменение величины потенциальной энергии ΔΠ тела за время его движения от вершины полусферы до точки отрыва равно 0,0588 Дж

Похожие работы

  • Динамика частиц

    Движение несвободной частицы. Силы реакции и динамика частиц. Движение центра масс, закон сохранения импульса системы. Закон сохранения кинетического момента системы. Закон сохранения и превращения механической энергии системы частиц. Теорема Кёнига.

  • Лекция по Квантовой физике

    1.1.Предмет классической физики: вещество и излучение. Описание эволюции физических систем происходит с помощью “динамических переменных”. Для систем с материальной точкой динамические переменные – r→(t), p→ (t); в ДСК: x(t), y(t), z(t); px(t), py(t), pz(t). С помощью динамических переменных определяется динамическое состояние физической системы в некоторый момент времени.

  • Примерные экзаменационные билеты по физике 11 класс

    Примерные экзаменационные билеты по физике Билет №1 Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение.

  • Физика. Билеты к экзамену за 9 класс

    Физика 9 кл. Бровкиной Билет №1 1. Механическое движение. Система отсчета. Материальная точка. Траектория. Путь и перемещение материальной точки. 2. Лабораторная работа. Определение коэффициента трения скольжения.

  • Физика (7-10 классы)

    Магнитная индукция B = F/Il = M/IS, где M – момент сил Справочные таблицы по физике Сила Ампера F = Ibl   Сила Лоренца   

  • Реактивный двигатель и основные свойства работы тепловых машин

    РЕФЕРАТ ПО ТЕМЕ: Реактивные Двигатели и Основы Работы Тепловой Машины НАПИСАЛ: Лукин А.В. ПРОВЕРИЛА: Шелкунова Т.В. г.НОВОКУЗНЕЦК Знание закона сохранения импульса во многих случаях даёт возможность выполнить расчёты результата взаимодействия тел, когда значения действующих сил неизвестны.

  • Исследование биполярного транзистора 2

    Лабораторная работа 1 Тема: " Исследование биполярного транзистора" Цель: Получение входных и выходных характеристик транзистора. Приборы и элементы: Биполярный транзистор 2N3904, источник постоянной ЭДС, источник переменной ЭДС, амперметры, вольтметры, осциллограф, резисторы.

  • Законы сохранения и симметрия

    Фундаментальные законы сохранения физических величин. Свойства симметрии физических систем. Связь законов сохранения с симметрией пространства и времени. Принципы симметрии в физике. Симметрия как основа описания объектов и процессов в микромире.

  • Гидростатика

       – раздел гидравлики, изучающий законы, которым подчиняются жидкость, находящаяся в состоянии покоя, силы, действующие в такой жидкости, и давление покоящейся жидкости на различные поверхности.

  • Расчет процесса горения газообразного топлива

    Расчет теоретического объёма расхода воздуха, необходимого для горения природного газа и расчет реального объёма сгорания, а также расчет теоретического и реального объёма продуктов сгорания. Сопоставление расчетов, используя коэффициент избытка воздуха.