Название: Автоматизированные формы
Вид работы: контрольная работа
Рубрика: Информатика и программирование
Размер файла: 56.33 Kb
Скачать файл: referat.me-133932.docx
Краткое описание работы: Структурная схема автоматизированной системы, передаточные функции каждого из звеньев и системы в целом, местной и общей обратной связи. Вычисление передаточной функции замкнутой и разомкнутой систем, координаты точек годографа по критерию Михайлова.
Автоматизированные формы
Федеральное Государственное образовательное учреждение
Высшего профессионального образования
«Омский государственный аграрный университет»
Кафедра электротехники и электрификации сельского хозяйства
Контрольная работа по предмету
«Автоматика»
Выполнил: Кеня А.А.
61 группа. Шифр 410
Проверил:
2009
Дано:
Рис. 1. Структурная схема AC: W (р) - передаточные функции звеньев
Уравнения звеньев в операторной форме имеют вид:
1-е звено:
2-е звено:
3-е звено:
4-е звено местной обратной связи (ОСМ):
5-е звено общей обратной связи (ОСО):
Таблица 1
Вариант | К1 | К2 | К3 | Т1 | Т2 | Т3 |
0 | 1 | 1 | 2 | 1 | 4 | 2 |
Определить передаточные функции каждого звена и системы в целом. Определить устойчивость системы по критерию Михайлова.
По заданным уравнениям звеньев находим передаточные функции этих звеньев:
1.
2.
3.
4. Передаточная функция местной обратной связи:
5. Передаточная функция общей обратной связи:
Следует иметь в виду, что если передаточная функция звена обратной связи W(p)осо =1,то это звено на структурной схеме можно не изображать, тогда структурная схема АС принимает вид.
Рис. 2. Структурная схема АС
В этой задаче местная обратная связь положительная, поэтому сектор хвых (р)осм не заштрихован. Передаточная функция для второго и четвертого звена вычисляется по формуле:
Находим общую передаточную функцию для разомкнутой АС, для чего имеющуюся замкнутую АС разомкнем в точке Q (этот разрыв можно сделать между любыми другими звеньями).
Общая передаточная функция всей системы для разомкнутого состояния будет равна:
Для замкнутой системы в случае единичной отрицательной обратной связи передаточная функция определяется по формуле:
Вычисляем передаточную функцию замкнутой системы:
Для определения устойчивости АС по критерию Михайлова необходимо ωω иметь передаточную функцию АС для замкнутого состояния, а ее знаменатель является характеристическим многочленом.
В характеристическом многочлене для замкнутой АС вместо оператора р подставим значение iω и получим выражение вектора Михайлова:
M(ìω) = 2(ìω)4 + 8(ìω)3 + 2(ìω)2 +2 = 2ω4 - 8 ìω3 -2ω2 + 2 =
= 2(1 - ω2 + ω4 ) +ì(-8ω)3
где R(ω) = 2 (1- ω2 + ω4 ); I(ω)= - 8ω3 .
Найдем координаты точек годографа по критерию Михайлова так же, как при построении по критерию Найквиста.
При ω→ 0 получим
R(ω)ω→0 → 2; I(ω)ω→0 =0
При ω→ + ∞ получим
R(ω)ω→∞ → + ∞; I(ω)ω→∞ =-∞
Приравнивая I(ω) = 0, находим корни уравнения:
- 8ω3 = 0; ω = 0;
Приравнивая R(ω) = 0, находим корни уравнения:
2(ω4 - ω2 + 1) = О,
2≠0
положив ω2 = х, получим
х2 -х+1=0
решаем уравнение:
Все корни получились мнимые, т.е. нет больше пересечений годографа с осью
ординат. Полученные данные заносятся в табл. 2.
Результаты вычислений
Таблица 2
ω | R(ω) | I(ω) | ω | R(ω) | I(ω) |
0 | 2 | 0 | 1 | 2 | -8 |
2 | 26 | -64 | |||
∞ | +∞ | -∞ |
Рис. 3. Годограф по критерию Михайлова
Вывод: годограф по критерию Михайлова не пересекает последовательно оси координат, следовательно, автоматическая система неустойчива.
Похожие работы
-
Коррекция дискретных систем управления
Способы дискретной коррекции систем управления. Порядок расчета корректирующего звена для дискретной системы. Особенность методов непосредственного, последовательного и параллельного программирования. Реализация дискретных передаточных функций.
-
Теория автоматического управления
МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РФ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Расчетно-графическая работа №1
-
Cинтез систем
Введение Управление каким-либо объектом – это процесс воздействия на него с целью обеспечения требуемого течения процессов в объекте или требуемого изменения его состояния. Основой управления является переработка информации о состоянии объекта в соответствии с целью управления.
-
Автоматическая система регулирования температуры
Функциональная схема, принцип действия и характеристики автоматической системы регулирования температуры. Статические характеристики нелинейной системы. Анализ устойчивости, моделирование и оптимизация линеаризованной системы с помощью программы Matlab.
-
Проектирование линейных стационарных САУ с микропроцессорными регуляторами
Анализ последовательного корректирующего устройства, основанного на использовании логарифмических частотных характеристик. Определение дискретной передаточной функции микропроцессорного регулятора. Динамика системы в периоде квантования по времени.
-
Анализ процесса регулирования непрерывной системы. Анализ процесса управление цифровой системы и синтез передаточной функции корректирующего цифрового устройства управления
Теория автоматического управления. Передаточная функция системы по ее структурной схеме. Структурная схема и передаточная функция непрерывной САР. Устойчивость системы. Исследование переходного процесса. Расчет и построение частотных характеристик.
-
Анализ одноконтурной САУ четвёртого порядка
Анализ устойчивости САУ. Расчёт частотных характеристик замкнутой САУ. Показатели качества регулирования. Синтез последовательного корректирующего устройства. Показатели качества регулирования скорректированной САУ. Моделирование скорректированной САУ.
-
Планирование работ в вычислительных системах по критерию минимального суммарного времени выполнения работ
Составление алгоритма и программы для факторизации целого числа N с помощью ро-метода Полларда. Краткое описание данного метода: составление последовательности, вычисление разности и наибольшего общего делителя. Алгоритм работы и листинг программы.
-
Исследование системы автоматического управления
Теория автоматического управления - совокупность целесообразных действий, направленных на достижение поставленных целей. Объект управления - техническое устройство, в котором протекает управляемый процесс. Алгебраические критерии устойчивости Гурвица.
-
Исследование линейных систем
Моделирование линейной системы, соответствующей элементам матричной весовой и переходной функций средствами пакета Matlab, их сравнение с аналитически полученными зависимостями. Расчет весовых и переходных функций. Анализ частотных характеристик.