Referat.me

Название: Транспортные модели

Вид работы: лабораторная работа

Рубрика: Информатика и программирование

Размер файла: 164.08 Kb

Скачать файл: referat.me-136633.docx

Краткое описание работы: Оптимальное решение задач транспортного типа, математические модели; определение потребностей в грузах и суммарного объема поставок по пунктам назначения; сведение к минимуму общей суммы затрат на перевозку. Ситуации, ограничивающие транспортную задачу.

Транспортные модели

Лабораторная работа №4

Транспортные модели

Цель работы: научиться находить оптимальное решение задач транспортного типа.

Задание

Вариант 1. На четырех ткацких станках с объемом рабочего времени 200, 300, 250 и 400 станко-ч за 1 час можно изготовить соответственно 260, 200, 340 и 500 м ткани трех артикулов I, II, III. Составить оптимальную программу загрузки станков, если прибыль (в ден. ед.) от реализации 1 м ткани i-го артикула при ее изготовлении на j-м станке характеризуется элементами матрицы

,

а суммарная потребность в ткани каждого из артикулов равна 200, 100 и 150 тыс. м, учитывая, что ткань Iартикула не может производиться на третьем станке.

Табличная модель:

Контрольные вопросы:

1. Как записывается математическая модель задачи транспортного типа?

Обозначим через xij объем перевозок от i-го поставщика j-ому потребителю. Математическая модель задачи имеет вид:

1) объем поставок i-го поставщика должен равняться количеству имеющегося у него груза

;

2) объем поставок j-ому потребителю должен быть равен его спросу

;

3) объемы поставок должны выражаться неотрицательными числами


xij ³0; , ;

4) общая сумма затрат на перевозку груза должна быть минимальной

.

Если суммарный объем отправляемых грузов равен суммарному объему потребностей в этих грузах по пунктам назначения

,

то такая транспортная задача называется закрытой (сбалансированной), в противном случае — открытой (несбалансированной).

Если указанные затраты неизвестны (не указаны) соответствующие значения сij полагают равными нулю.

модель поставка потребность затрата

2. Как свести открытую транспортную задачу к закрытой?

Если имеет место открытая транспортная задача, ее необходимо свести к закрытой:

1) в случае перепроизводства – ввести фиктивного потребителя с необходимым объемом потребления (элементы матрицы сij , связывающие фиктивные пункты с реальными, имеют значения, равные затратам на хранение невывезенных грузов);

2) в случае дефицита – ввести фиктивного поставщика с недостающим объемом отправляемых грузов (элементы матрицы сij , связывающие фиктивные пункты с реальными, имеют значения, равные штрафам за недопоставку продукции).


3. Каковы основные ситуации, описывающие дополнительные ограничения транспортной задачи?

При решении практических задач зачастую приходится учитывать ряд дополнительных ограничений.

1. Отдельные поставки от определенных поставщиков некоторым потребителям должны быть исключены (из-за отсутствия необходимых условий хранения, чрезмерной перегрузки коммуникаций и т.д.). Это достигается искусственным значительным завышением затрат на перевозки сij в клетках, перевозки через которые следует запретить.

2. На предприятии необходимо определить минимальные суммарные затраты на производство и транспортировку продукции. С подобной задачей сталкиваются при решении вопросов, связанных с оптимальным размещением производственных объектов. Здесь может оказаться экономически более выгодным доставлять сырье из более отдаленных пунктов, но зато при меньшей его себестоимости. В таких задачах за критерий оптимальности принимают сумму затрат на производство и транспортировку продукции.

3. Ряд транспортных маршрутов, по которым необходимо доставить грузы, имеют ограничения по пропускной способности. Если, например, по маршруту Ai Bj можно провести не более qединиц груза, то Bj -й столбец матрицы разбивается на два столбца – и . В первом столбце спрос принимается равным , во втором – . Несмотря на то, что фактические затраты сij в обоих столбцах одинаковы и равны исходным, в столбце вместо истинного тарифа сij ставится искусственно завышенный тариф М (клетка блокируется). Затем задача решается обычным способом.

4. Поставки по определенным маршрутам обязательны и должны войти в оптимальный план независимо от того, выгодно это или нет. В этом случае уменьшают запас груза у поставщиков и спрос потребителей и решают задачу относительно тех поставок, которые необязательны. Полученное решение корректируют с учетом обязательных поставок.

5. Необходимо максимизировать целевую функцию задачи транспортного типа (например, задача об оптимальном распределении оборудования). В этом случае необходимо изменить знак в тарифах на противоположный. В ответе отрицательный знак игнорируется.

Вывод: я научилась находить оптимальное решение задач транспортного типа.

Похожие работы

  • Математическая модель оборота малого бизнеса в регионах

    Предложена математическая модель, отражающая зависимость между оборотом малых предприятий и двумя факторами: затратами на заработную плату работников и инвестициями в основной капитал малых предприятий.

  • Транспортная задача по критериям стоимости и времени

    Применение метода минимального элемента и теоремы потенциала для составление плана минимизации суммарных материальных транспортных издержек при перевозке всего товара из пунктов производства в пункты потребления. Листинг программы оптимизации перевозок.

  • Решение транспортной задачи методом потенциалов

    Программа для решения транспортной задачи. Метод потенциалов, его математический смысл и порядок действий по его применению. Математические методы решения транспортных задач. Вычисление стоимости перевозок, расхода топлива, общей прибыли и окупаемости.

  • Планирование поставок торговой фирме с использованием имитации и генетического алгоритма

    Состав системы планирования. Требования к планам поставок. Имитационная модель торговой фирмы. Оптимизационная процедура.

  • Постановка и решение транспортной параметрической задачи

    Сущность и назначение основных алгоритмов оптимизации. Линейное программирование. Постановка и аналитический метод решения параметрической транспортной задачи, математическая модель. Метод решения задачи об оптимальных перевозках средствами MS Excel.

  • Метод потенциалов для решения транспортной задачи

    Основные этапы решения транспортной задачи, использование метода потенциалов. Алгоритм решения методом аппроксимации Фогеля. Процедура построения цикла. Планирование перевозок из конечного числа пунктов отправления в конечное число пунктов назначения.

  • Решение задач линейного программирования транспортной задачей

    Оптимизация затрат на доставку продукции потребителям. Характеристика транспортной задачи, общий вид решения, обобщение; содержательная и математическая постановка задачи, решение с помощью программы MS Excel: листинг программы, анализ результатов.

  • Модель высотного лифта

    Модель лифтовой системы для высотного здания. Высадка и посадка пассажиров. Механический износ системы. Управление движением лифтов. Моделирование работы лифтовой системы при помощи программы на языке C++. Минимальность затрат на обслуживание лифтов.

  • Планирование работ в вычислительных системах по критерию минимального суммарного времени выполнения работ

    Составление алгоритма и программы для факторизации целого числа N с помощью ро-метода Полларда. Краткое описание данного метода: составление последовательности, вычисление разности и наибольшего общего делителя. Алгоритм работы и листинг программы.

  • Математическое программирование

    Решение задачи линейного программирования симплекс-методом. Нахождение оптимального плана по критерию максимума прибыли. Транспорт - определение плана перевозок грузов на предприятие, которое обеспечивает минимальные совокупные транспортные издержки.