Название: Определение мольной теплоемкости методом интерполяции
Вид работы: курсовая работа
Рубрика: Информатика и программирование
Размер файла: 119.4 Kb
Скачать файл: referat.me-136769.docx
Краткое описание работы: Написание программы решения технических задач языком высокого уровня Си: определение мольной теплоемкости кислорода методом интерполяции. Построение математических моделей, графиков и таблиц по результатам расчетов, составление текста программы.
Определение мольной теплоемкости методом интерполяции
Федеральное агентство по образованию
Федеральное государственное образовательное учреждение
Высшего профессионального образования
"СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ"
Институт космических и информационных технологий
Кафедра системы искусственного интеллекта
КУРСОВАЯ РАБОТА
Тема: ОПРЕДЕЛЕНИЕ МОЛЬНОЙ ТЕПЛОЕМКОСТИ МЕТОДОМ ИНТЕРПОЛЯЦИИ
Красноярск, 2009
Содержание
1. Цели и задачи курсовой работы
2. Теоретические основы курсовой работы
3. Массив исходных данных
4. Математические модели, применяемые для расчетов
5. Результаты расчетов, представляющиеся в виде таблиц и графиков
6. Текст программы
Вывод
Список литературы
1. Цели и задачи курсовой работы
Цель курсовой работы: закрепление навыков работы с языком высокого уровня Си, умение писать на этом языке программы решения технических задач (определение мольной теплоемкости кислорода, c помощью метода интерполяции).
Задача: определение приблизительных значений теплоемкости при температурах от 0 0 С до 1500 0 С с шагом Dt=10 0 C, методами интерполяции, позволяющими узнать приблизительные значения функции в промежуточных точках.
2. Теоретические основы курсовой работы
Результаты экспериментов зачастую представляют собой таблицу следующего вида:
X | ![]() |
![]() |
… | ![]() |
![]() |
![]() |
![]() |
… | ![]() |
где Х - это может быть, например, время, а f(X) скорость или, как в нашем примере Х – это температура, а f(X) это теплоемкость.
Из этой таблицы, например, известны значения функции f(X) в точках х0
и х1
,
но мы ничего не знаем о ее значении, например, в точке , однако, существуют методы, позволяющие узнать приблизительные значения функции в промежуточных точках. К таким методам относятся методы интерполяции.
Определение 1: Интерполяцией называется отыскание приближенной функции F(X), такой что F(xi )=f(xi ), где i=0,1…n, af(xi ) известные значения функции F(X) на отрезке[x0 , xn ]. Точки, в которых F(xi )=f(xi ) называются узлами интерполяции.
Определение 2: Если найденная интерполяционная функция F(X) для отрезка [x0 , xn ] имеет область определения вне этого отрезка, тогда она будет называться экстраполяцией функции f(x).
Одним из методов интерполяции является метод Интерполяции степенным многочленом
Будем искать интерполяционную функцию F(X) в виде многочлена степени n:
(*)
Многочлен Pn (x) имеет n+1 коэффициент, следовательно, n+1 условие, наложенное на многочлен однозначно определит его коэффициенты, которые могут быть получены их условия:
или
Разрешив эту систему относительно ai (i=0,1…,n), получим аналитическое выражение для полинома (*).
3. Массив исходных данных
Опытным путем найдены данные истинной мольной теплоемкости кислорода mср при постоянном давлении P=const, при температуре t=0 0 C, t=500 0 C, и t=1000 0 C, представленные таблицей 1.
Таблица 1.
№варианта | ![]() |
![]() |
![]() |
1 | 29.2741 | 33.5488 | 35.9144 |
2 | 29.2801 | 33.5501 | 35.9201 |
3 | 29.2729 | 33.5493 | 35.9167 |
4 | 29.30 | 33.5479 | 35.9251 |
5 | 29.2752 | 33.5485 | 35.9109 |
6 | 29.2748 | 33.5397 | 35.8999 |
7 | 29.2752 | 33.5501 | 35.9123 |
8 | 29.2744 | 33.5486 | 35.9128 |
9 | 29.2699 | 33.5484 | 35.9251 |
10 | 29.2742 | 33.5481 | 35.9109 |
11 | 29.2753 | 33.5399 | 35.9201 |
12 | 29.2748 | 33.5501 | 35.9167 |
13 | 29.2801 | 33.5493 | 35.9144 |
14 | 29.2729 | 33.5479 | 35.9201 |
15 | 29.2744 | 33.5485 | 35.9123 |
16 | 29.2699 | 33.5493 | 35.9128 |
17 | 29.2742 | 33.5479 | 35.9251 |
18 | 29.2753 | 33.5485 | 35.9109 |
19 | 29.2748 | 33.5397 | 35.9128 |
20 | 29.2752 | 33.5501 | 35.9251 |
21 | 29.2744 | 33.5486 | 35.9201 |
22 | 29.2741 | 33.5484 | 35.9167 |
23 | 29.2801 | 33.5481 | 35.9144 |
24 | 29.2753 | 33.5486 | 35.9201 |
мольный теплоемкость интерполяция программа
В нашем случае рассматриваются данные варианта №5.
№ варианта |
![]() |
![]() |
![]() |
5 | 29.2752 | 33.5485 | 35.9109 |
4. Математические модели, применяемые для расчетов
Интерполяционный многочлен mср =f(t0 ), будет иметь следующий вид:
,
на основе него составляется система линейных уравнений, разрешив которую относительно коэффициентов a, b, d, получим интерполяционную функцию. Составим для этих данных интерполяционные уравнения:
1.
2.
3.
4.
5.
y=29,2752+0,0104575*t-0,0000038218*t2
5. Результатырасчетов
t°,C | mср | t°,C | mср |
0 | 29.2752 | 400 | 32.8467 |
10 | 29.3794 | 410 | 32.9203 |
20 | 29.4828 | 420 | 32.9932 |
30 | 29.5855 | 430 | 33.0653 |
40 | 29.6874 | 440 | 33.1366 |
50 | 29.7885 | 450 | 33.2072 |
60 | 29.8889 | 460 | 33.2770 |
70 | 29.9885 | 470 | 33.3460 |
80 | 30.0873 | 480 | 33.4143 |
90 | 30.1854 | 490 | 33.4818 |
100 | 30.2827 | 500 | 33.5485 |
110 | 30.3793 | 510 | 33.6145 |
120 | 30.4551 | 520 | 33.6797 |
130 | 30.5701 | 530 | 33.7441 |
140 | 30.6643 | 540 | 33.8078 |
150 | 30.7578 | 550 | 33.8707 |
160 | 30.8506 | 560 | 33.9329 |
170 | 30.9425 | 570 | 33.9943 |
180 | 31.0337 | 580 | 34.0549 |
190 | 31.1242 | 590 | 33.1148 |
200 | 31.2138 | 600 | 34.1739 |
210 | 31.3027 | 610 | 34.2322 |
220 | 31.3909 | 620 | 34.2897 |
230 | 31.4783 | 630 | 34.3466 |
240 | 31.5649 | 640 | 34.4026 |
250 | 31.6507 | 650 | 34.4579 |
260 | 31.7358 | 660 | 34.5124 |
270 | 31.8201 | 670 | 34.5661 |
280 | 31.9037 | 680 | 34.6191 |
290 | 31.9865 | 690 | 34.6713 |
300 | 32.0685 | 700 | 34.7228 |
310 | 32.1497 | 710 | 34.7735 |
320 | 32.2302 | 720 | 34.8234 |
330 | 32.3100 | 730 | 34.8725 |
340 | 32.3890 | 740 | 34.9209 |
t°,C | mср | t°,C | mср |
750 | 34.9686 | 1150 | 36.2470 |
760 | 35.0154 | 1160 | 36.2633 |
770 | 35.0615 | 1170 | 36.2788 |
780 | 35.1069 | 1180 | 36.2936 |
790 | 35.1514 | 1190 | 36.3076 |
800 | 35.1952 | 1200 | 36.3208 |
810 | 35.2383 | 1210 | 36.3333 |
820 | 35.2806 | 1220 | 36.3450 |
830 | 35.3221 | 1230 | 36.3559 |
840 | 35.3628 | 1240 | 36.3661 |
850 | 35.4028 | 1250 | 36.3755 |
860 | 35.4420 | 1260 | 36.3842 |
870 | 35.4805 | 1270 | 36.3920 |
880 | 35.5185 | 1280 | 36.3992 |
890 | 35.5551 | 1290 | 36.4055 |
900 | 35.5913 | 1300 | 36.4111 |
910 | 35.6267 | 1310 | 36.4159 |
920 | 35.6613 | 1320 | 36.4200 |
930 | 35.6952 | 1330 | 36.4233 |
940 | 35.7283 | 1340 | 36.4258 |
950 | 35.7607 | 1350 | 36.4276 |
960 | 35.7922 | 1360 | 36.4286 |
970 | 35.8230 | 1370 | 36.4288 |
980 | 35.8531 | 1380 | 36.4283 |
990 | 35.8824 | 1390 | 36.4270 |
1000 | 35.9109 | 1400 | 36.4250 |
1010 | 35.9387 | 1410 | 36.4222 |
1020 | 35.9656 | 1420 | 36.4186 |
1030 | 35.9919 | 1430 | 36.4142 |
1040 | 36.0173 | 1440 | 36.4091 |
1050 | 36.0420 | 1450 | 36.4032 |
1060 | 36.0660 | 1460 | 36.3966 |
1070 | 36.0891 | 1470 | 36.3892 |
1080 | 36.1116 | 1480 | 36.3810 |
1090 | 36.1332 | 1490 | 36.3721 |
1100 | 36.1541 | 1500 | 36.3624 |
1110 | 36.1742 | ||
1120 | 36.1935 | ||
1130 | 36.2121 | ||
1140 | 36.2299 |
График:
6. Текст программы
#include<stdio.h>
#include<conio.h>
#include<math.h>
float andrey (float c1, float c2, float m);
void main()
{clrscr();
float p1,p2,b,d;
int t1=500,i;
float k1=29.2752,k2=33.5485,k3=35.9109;
p1=(k2-k1)/t1;
p2=(k3-k1)/(2*t1);
d=-(p1-p2)/t1;
b=p1-t1*d;
printf ("n b=%f",b);
printf ("n d=%f",d);
andrey (b,d,k1);}
float andrey (float c1,float c2,float m)
{clrscr();
float t[1000];
float y[1000];
int h=10,i;
for (t[0]=0,i=0;i<=150;i++)
{t[i]=t[0]+i*h;
y[i]=m+c1*t[i]+c2*t[i]*t[i];
printf ("n t[%i]=%7.2f y[%i]=%7.2f",i,t[i],i,y[i]);}
getch();}
Вывод
Данные истинной мольной теплоемкости кислорода mср ,найденные опытным путем при постоянном давлении P=const, при температуре t=0 0 C, t=500 0 C, и t=1000 0 C, совпали с mср , найденные мной с помощью языка Си. Значит, метод интерполяции сработал.
Список литературы:
1. Паппас Крис Мюрей. Программирование на языке С++:-К.: Издательская группа BHV, 2000. - 320с.
2. Крячков А.В., Сухинина И.В., Томшин В.К. Программирование на С и С++. Практикум: Учеб. пособие для вузов/ Крячков А.В., Сухинина И.В., Томшин В.К.: Под ред. Томшина – 2-е изд. испр. – М.: Горячая линия – Телеком. 2000 – 344 с.: ил.
3. Подбельский В.В., Фомин С.С. Программирование на языке Си: Учеб. пособие – 2-е доп. изд. – М.: Финансы и статистика, 2000 – 600 с.: ил.
4. Гутер Р.С., Овчинский Б.В. Элементы численного анализа и математической обработки результатов опыта. – 2-е изд., перераб. – М.: Наука, 1970, 432 с.
5. Волков Е.А. Численные методы. – 2-е изд. испр. – М.: Наука, 1987, 248 с.
6. Мудров А.Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль – Томск: "РАСКО", 1991, - 272 с.: ил.
7. Плис А.И., Сливина Н.А. Лабораторный практикум по высшей математике.: Учеб. пособ. для втузов. . – 2-е изд., перераб. и доп. – М.: Высш. шк., 1994. – 416 с.
Похожие работы
-
Выполнение расчетов и оформление технической документации с использованием текстовых редакторов и электронных таблиц
Таблица как удобное средство представления данных. Разработка электронной таблицы, содержащей базу данных о заработной плате сотрудников. Построение электронной диаграммы, отображающей графически размер заработной платы, налогов, профсоюзных взносов.
-
Информатика
Численный метод решения задачи –это определённая последовательность операций над числами, язык которого - числа и арифметические действия.
-
Разработка алгоритмов и диалоговых программ автоматизированного формирования
Темой моей дипломной работы является : Синтез и анализ КЭМ пространственных конструкций сложной формы. Передо мной была поставлена задача : 1. - разработка алгоритмов и диалоговых программ автоматизированного формирования конечно-элементных моделей оболочковых и объемных конструкций, ограниченных поверхностями произвольной формы, при минимальном объеме исходных данных;
-
Построение интерполяционного многочлена и вычисление по нему значения функции для заданного аргумента
3.05 63.96 3.15 44.39 3.25 51.20 3.35 58.44 3.45 50.15 3.55 44.51 3.65 47.25 3.75 35.24 3.85 43.28 МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Международная «Лига развития науки и образования» (Россия)
-
Mathcad: от графика к формуле, от расчета на компьютере к расчету в Интернет
В статье затронута частная инженерная задача (автоматизация работы с семействами кривых), на примере которой рассмотрена новая тенденция ¬– перенос расчетов с рабочей станции на сервера Интернет (Webcalculations).
-
Программа вычисления минимума заданной функции
Постановка задачи и ее формализация. Поиск значений интерполяционного многочлена в точках x1 и x2. Поиск минимума функции F(x) на отрезке [a;b]. Проверка условий сходимости методов. Тестирование программных модулей. Детализированная схема алгоритма.
-
Вычислительная техника и программирование
Построение интерполяционного полинома Ньютона по значениям функции в узлах согласно методу Лагранжа. Составление алгоритмов решения задачи, их реализация на программном уровне на языке Turbo Pascal. Представление результатов работы программы Polinom.
-
Утилита "Поверхность"
Изучение возможностей программы "Поверхность": рассмотрение методов построения изолиний, диаграмм Вороного, профиля, интерполированного графика, трехмерной визуализации, поверхностей методом триангуляции Делоне и проведение расчета зон прямой видимости.
-
Интерполяция функции одной переменной методом Ньютона
Разработка программы, применяемой для интерполяции таблично заданной функции методом Ньютона. Метод структурного программирования для облегчения написания и отладки программы, повышения ее наглядности, читаемости. Применение языка программирования Pascal.
-
Решение систем линейных алгебраических уравнений (прямые методы)
Изучение метода прямой итерации: приведение системы к итерационному виду путем деления каждого уравнения на соответствующих диагональный элемент, проведение проверки выполнения условия сходимости и составление программы на языке С++ для решения системы.