Referat.me

Название: Моделирование линейных систем

Вид работы: контрольная работа

Рубрика: Информатика и программирование

Размер файла: 58.67 Kb

Скачать файл: referat.me-137011.docx

Краткое описание работы: Решение задачи на построение имитационной модели статической линейной системы, имеющей три входа и один выход. Предполагается, что на систему действуют случайные возмущения, результатом которых являются случайные составляющие с нормальным разделением.

Моделирование линейных систем

Министерство образования РФ

Тульский Институт Экономики и Информатики

Кафедра информационных технологий

Контрольная работа

По дисциплине «Теория систем и системный анализ»

По теме «Моделирование линейных систем»

Выполнил: студентка 1-го курса

Специальности ПИвЭ05

Андрианова К.Г.

Проверил:

Токарев В.Л.

Тула 2006


Введение

Целью системного анализа является моделирование системы.

Существуют два способа моделирование системы:

-аналитический;

-имитационный.

Аналитический способ применяется тогда, когда закономерности процессов, протекающих в системе, известны.

Имитационный способ применяется тогда, когда такие закономерности не известны, но в процессе функционирования системы, может быть накоплена выборка данных, содержащих информацию о поведении системы.

В контрольной работе решается задача построения имитационной модели статической линейной системы, имеющей три входа и один выход. Предполагается, что на систему действуют случайные возмущения, результатом которых являются случайные составляющие с нормальным разделением.


Построение математической модели системы

В контрольной работе решается задача построения имитационной модели статической решеткой системы, имеющей 3 входа и 1 выход.

Предполагается, что на систему действует случайное вращение, результатом которого является случайное составление с нормальным распределением.

Формирование матриц Х и Y по исходным данным (обучающая выборка – первые 20 строк матрицы):

Найдем вектор исходных параметров:

1) Транспонируем матрицу Х.


2)

3)

Получаем вектор исходных параметров:

Сформируем матрицы X1 и Y1, полученные из контрольной выборки (следующие 20 чисел):


Для оценки случайности значений временного ряда ошибки необходимо сформировать матрицу Е по контрольной выборке.

Для того, чтобы сформировать матрицу Е нужно:

- найти скалярную величину У2(матрицу Х1 умножить на вектор случайных параметров Р)


- найдем саму матрицу по формуле:

Получим:

Сравним значения в матрице Е (значение сравнивается с предыдущим):

Длина серий получилась равно двум ().

Число серий получилось равное двенадцати().

По формуле должно быть: n > n1 и τ <τ1

Найдем n1 по формуле:

Найдем τ1 по формуле:


Получаем: 15 > 9.476 и 2 < 7.593

Следовательно: n > n1 и τ <τ1 – верно.

Гипотеза об адекватности не отвергается.

Для оценки взаимной зависимости значений ременного ряда, необходимо найти d. Чтобы его найти нужно выполнить следующие действия:

- сформировать матрицы Е1 и Е2

Для того, чтобы получить матрицу Е1 нужно скопировать значения из матрицы Е с 1 по 19; для получения матрицы Е2 мы скопируем значения из матрицы Е, начиная с 0 и заканчивая 18 значением, при этом получим:

Затем по формуле найдем матрицу Е3:


Теперь транспонируем Е3, получим:

Транспонируем матрицу Е, получим:

Затем по формулам находим d:

d=0..2, этом говорит о том, что имеется отрицательная взаимозависимость между ошибками. Гипотеза об адекватности модели не отвергается.

Проверка распределения случайной величины Е на нормальность заключается в оценке двух статистик: асимметрии и эксцесса.

Для того, чтобы найти асимметрию необходимо знать S, она является среднеквадратичной. Среднеквадратичная вычисляется по формуле:

Из этой формулы нам известно Е4.Для того, чтобы найти выполним следующие действия:


Теперь транспонируем полученную матрицу Е4, получим:

Теперь мы можем найти S:

Мы нашли S, теперь можем найти асимметрию (А), подставив Е4 в формулу:


Далее находим эксцесс по формуле, подставляя S. Эксцесс обозначим буквой В.

Получим:

Чем ближе эксцесс к 0, то считается это нормально.



Если выполняется следующее условие

То гипотеза об адекватности не отвергается. Следовательно, гипотеза, об адекватности модели отвергается.


Заключение

В контрольной работе решалась задача построения имитационной модели статической системы, имеющей 3 входа и 1 выход.

Предполагалось, что на систему действует случайное возмещение, результатом которого является случайное составление с нормальным распределением.

В контрольной работе производилась проверка адекватности модели системы. Проверка состояла из трёх этапов:

1. Оценки случайности значений временного ряда ошибки (здесь были выполнены оба неравенства n > n1 и τ <τ1 – это означает, что гипотеза об адекватности не отвергается).

2. Оценка взаимной зависимости значений временного ряда (d=0..2(2.011) - -это означает, что имеется отрицательная взаимозависимость между ошибками).

3. Проверка распределения случайной величины на нормальность (условие, при котором гипотеза об адекватности не отвергается, не выполняется).

Похожие работы

  • Параллельное моделирование компьютерной сети в системе Prime

    PRIME (Parallel Real-time Immersive Modeling Environment) – это научно-исследовательский проект, главной целью которого является исследование фундаментальных технологий, допускающих крупномасштабное сетевое моделирование.

  • Задачи синтеза оптимальных систем управления

    Сущность статистического синтеза: поиск и реализация оптимальных свойств (структуры и параметров) системы по заданным статистическим характеристикам входных воздействий. Методы статистической оптимизации. Постановка задачи Винера–Колмогорова и ее решение.

  • Сигналы и их характеристики

    Использование электрических сигналов в технических системах. Классификация сигналов: непрерывные и дискретные, детерминированные и случайные, периодические, каузальные, финитные, когерентные и ортогональные. Длительность, ширина, объем и база сигнала.

  • Построение и использование компьютерных моделей

    Понятие компьютерной и информационной модели. Задачи компьютерного моделирования. Дедуктивный и индуктивный принципы построения моделей, технология их построения. Этапы разработки и исследования моделей на компьютере. Метод имитационного моделирования.

  • Моделирование структурных схем в среде SIMULINK пакета MATLAB

    Практические навыки моделирования структурных схем в среде SIMULINK пакета MATLAB. Построение графиков функций в декартовой системе координат. Решение систем линейных и нелинейных уравнений. Работа с блоками Sum, Algebraic Constraint, Gain, Product.

  • Построение и анализ простой эконометрической модели

    Проверка наличия линейной связи между соответствующими показателями деятельности коммерческих банков Украины в модуле Multiple Regression ППП Statistica. Расчет теоретических значений зависимой переменной и ошибки модели, вид графика линейной функции.

  • Автоматическая система регулирования температуры

    Функциональная схема, принцип действия и характеристики автоматической системы регулирования температуры. Статические характеристики нелинейной системы. Анализ устойчивости, моделирование и оптимизация линеаризованной системы с помощью программы Matlab.

  • Имитационные модели

    Сущность понятия "имитационное моделирование". Подклассы систем, ориентированных на системное и логическое моделирование. Способы построения моделирующего алгоритма. Имитационные модели производственных процессов. Структура обобщенной имитационной модели.

  • Имитационное моделирование станции технического обслуживания

    Построение имитационной модели станции технического обслуживания, на основе системы Micro Saint. Определение комплекса работ модели, основных параметров для них, связей между работами. Оценка распределения числа полицейских машин, находящихся в ремонте.

  • Регулировочный участок цеха

    Задачи теории массового обслуживания. Моделирование работы регулировочного участка цеха. Обобщенная схема моделирующего алгоритма. Краткая характеристика технологии реализации, особенности программирования. Описание функций программы и интерфейса.