Referat.me

Название: Химические свойства альдегидов и кетонов. Присоединение кислородных нуклеофилов

Вид работы: контрольная работа

Рубрика: Химия

Размер файла: 127.93 Kb

Скачать файл: referat.me-369592.docx

Краткое описание работы: Альдегиды и кетоны – их химические свойства. Двойная связь. Электронодефицитный и электроноизбыточный центр. Молекулы карбонильных соединений, имеющие несколько рекреационных центров. Образование ацеталей посредством присоединения спиртов. Нуклеофилы.

Химические свойства альдегидов и кетонов. Присоединение кислородных нуклеофилов

Двойная связь С=О, подобно связи С=С, представляет собой комбинацию s - и p-связей (они изоэлектронны). Однако, между этими двумя двойными связями имеются существенные различия:

- C=O значительно прочнее С=С;

- энергия связи С=О (179 ккал/моль) больше, чем энергия двух связей С-О (85.5 ккал/моль), в то время как энергия связи С=С (146 ккал/моль) меньше суммы энергий двух связей С-С (82.6. ккал/моль);

- связь С=О в отличие от С=С полярна.

При этом p-связь поляризована сильнее, чем s-связь. Таким образом, атом углерода карбонильной группы является электронодефицитным центром, а кислорода - электроноизбыточным.


d+d-

Кроме тогo, карбонильная группа увеличивает кислотность атомов Н у соседнего атома С, приводя к увеличению кинетической кислотности (увеличению полярности связи С-Н из-за - I-эффекта карбонильной группы) и термодинамической кислотности (стабилизация образующегося карбаниона за счет мезомерного эффекта).

В молекулах карбонильных соединений имеется несколько реакционных центров.

Электрофильный центр - карбонильный атом углерода, возникновение частичного положительного заряда на котором обусловлено полярностью связи С=О. Электрофильный центр участвует в реакциях нуклеофильного присоединения.

Основный центр - атом кислорода с не поделенными парами электронов. С участием основного центра осуществляется кислотный катализ в реакциях присоединения, а также в процессе енолизации. Важно отметить, что альдегиды и кетоны являются жесткими основаниями Льюиса и координируются с жесткими кислотами: H+, BF3, ZnCl2, FeCl3 и т.д.

a-СН-Кислотный центр, возникновение которого обусловлено индуктивным эффектом карбонильной группы. При участии СН-кислотного центра протекают многие реакции карбонильных соединений, в частности реакции конденсации.

Связь С¾Н в альдегидной группе разрывается в реакциях окисления.

Ненасыщенные и ароматические углеводородные радикалы, подвергающиеся атаке электрофильными или нуклеофильными реагентами.

А. Присоединение воды

Альдегиды и кетоны обратимо присоединяют воду, давая гем-диолы, выделить которые, как правило, не удается. Например, формалин, используемый для консервации биологических объектов, представляет собой гидратную форму 40% -ного раствора формальдегида в воде.

(31)

формальдегидгидрат (>99%)

В формалине практически весь альдегид существует в гидратной форме. Альдегиды и кетоны, у которых по соседству с карбонильной группой находится электроноакцепторный заместитель, образуют устойчивые гидраты, например:


(32)

хлораль хлоральгидрат


Б. Присоединение спиртов - образование ацеталей.

Спирты обратимо присоединяются к альдегидам с образованием полуацеталей. В спиртовых растворах альдегидов полуацетали находятся в равновесии с карбонильными соединениями. Так, в этанольном растворе ацетальдегида содержится около 30% полуацеталя (в расчете на альдегид).

(33)

1-этоксиэтанол

(полуацеталь)

Полуацетали обычно не выделяют из реакционной смеси из-за их неустойчивости. Исключение составляют циклические полуацетали, образующиеся самопроизвольно из g - и d-гидроксиальдегидов. Например, доля циклического полуацеталя в его равновесной смеси с 5-гидроксипентаналем составляет 94%.

(34)

5-оксипентаналь

(35)

4-оксипентаналь


Полуацетали при взаимодействии со второй молекулой спирта в присутствии сильных кислот и при условии удаления воды в результате реакции нуклеофильного замещения могут превращаться в полные ацетали.

(36)

1,1-диэтоксиэтан

(37)

Механизм образования ацеталей и кеталей на первом этапе AN, а на втором SN1.

(м 6)


Вместо двух молекул спирта можно использовать одну молекулу диола:

(38)

этилендиоксициклогексан

Ацетали обладают структурой простых эфиров и подобно простым эфирам устойчивы к щелочам и нуклеофильным реагентам, но гидролизуются водными кислотами, причем гораздо легче, чем простые эфиры: уже при комнатной температуре под действие разбавленных минеральных кислот:

Устойчивость ацеталей и кеталей к действию нуклеофильных реагентов позволяет защищать карбонильную группу при проведении реакции по другим группам с нуклеофильными реагентами. После чего карбонильную группу рекуперируют. Для такой защиты чаще всего используют этиленгликоль:


Присоединение серосодержащих нуклеофилов.

Атом серы тиолов является лучшим нуклеофилов, чем атом кислорода спиртов. Тиолы реагируют с карбонильными соединениями в кислой среде, образуя дитиоацетали.

(39)

1,1-ди(этилтио) этан (дитиоацеталь)

С этилендитио-1,2-диолом и 1,3-пропандитиолом образуются циклические тиоацетали.

При нагревании тиокеталей с никелем Ренея в спирте происходит десульфурирование, в результате чего исходная карбонильная группа превращается в метиленовую и таким образом достигается восстановление альдегидов и кетонов в углеводороды.

(40)

циклический тиокеталь

(41)

1,3-пропандитиол 1,3-дитиан

(циклический тиоацеталь)

Дитиоацетали обладают СН-кислотными свойствами (pKa31), поэтому при действии сильных оснований, например, литийорганических соединений, они отщепляют протон, образуя карбанион, отрицательный заряд которого делокализуется при участии 3d-орбиталей атома серы. В результате происходит обращение полярности реакционного центра (Umpolung): карбонильный атом углерода (электрофильный центр) превращается в карбанион, обладающий нуклеофильными свойствами.

(42)

1,3-дитиан бутиллитий литиевая соль 1,3-дитиана

Далее карбанион алкилируется алкилгалогенидом, и после расщепления замещенного тиоацеталя образуется новое карбонильное соединение.

Дитиоацетали устойчивы к действию оснований и довольно трудно гидролизуются в кислой среде. Для их расщепления используют соединения ртути и кадмия.

(43)

Результатом всех этих превращений является превращение альдегида в кетон. Литиевая соль 1,3-дитиана реагирует и с альдегидами, давая в конечном итоге a-оксикетон.

(44)


Упр. 11. Напишите структурные формулы соединений, обозначенных на схемах заглавными буквами.

(а)

(б)

Упр. 12. Каким образом показанные исходные продукты могут быть превращены в конечные с использованием 1,3-дитианов в качестве промежуточных продуктов?

(а) (б)

Г. Образование дисульфитных комплексов

Альдегиды и простейшие метилкетоны взаимодействуют с концентрированным раствором дисульфита натрия с образованием кристаллических веществ, обычно называемых дисульфитными производными альдегидов и кетонов. Дисульфитные производные плохо рстворимы и используются для отделения альдегидов и кетонов. Присоединение происходит в результате нуклеофильной атаки дисульфит-иона по карбонильному атому углерода с последующим присоединением иона водорода по карбонильному кислороду. Доказано, что дисульфит-анион реагирует местом с наибольшей нуклеофильной силой (по атому серы), а не местом с наибольшей электронной плотгностью (атом кислорода):


дисульфитное производное

(45)

1-гидроксипропан-1-сульфонат натрия

(46)

Подобно другим реакциям присоединения по карбонильной группе, эта реакция обратима. Нагревание дисульфитных комплексов с разбавленными кислотами или водным раствором карбоната натрия приводит к регенерации карбонильных соединений:

(47)

Реакция с гидросульфитом натрия используется для качественного определения альдегидов и кетонов, а также для их выделения и очистки. Следует, однако, заметить, что с гидросульфитом натрия реагируют только метилкетоны, имеющие группу СН3СО-. Решающую роль в реакциях расщепления дисульфитных производных играет то факт, что сульфогруппа является хорошей уходящей группой. Она может замещаться и на другие нуклеофильные группы, например:

(48)

Упр. 13. Напишите реакции дисульфита натрия с (а) уксусным альдегидом,

(б) бензальдегидом и (в) ацетоном и опишите их механизм. Напишите реакции образующихся дисульфитных производных с цианидом натрия.

Упр.14. Завершите реакции:


(и)

Похожие работы

  • Енолят-анионы и енамины. Таутомерия. Альдольные реакции

    Реакция присоединения протона енолят-аниона к атому углерода или кислорода, механизм их взаимодействия с алкилгалогенидами. Сущность и примеры таутомерного превращения. Реакции альдольного присоединения и конденсации, катализаторы и частный случай.

  • Одно и многоатомные спирты

    Одно- и многоатомные спирты Алифатические спирты - это соединения, содержащие гидроксильную группу (-ОН), связанную с sp -гибридизованным атомом углерода. Спирты можно разделить на три большие группы: простые спирты, стерины и углеводы. Рассмотрим простые спирты, с общей формулой C

  • Ненасыщенные альдегиды и кетоны

    Ненасыщенные альдегиды и кетоны Ненасыщенные альдегиды и кетоны, в зависимости от взаимного расположения двойной и карбонильной групп в молекуле, могут быть поделены на три группы: с сопряженными (CH=CH

  • Альдегиды и кетоны

    Введение Это единения, содержащие карбонильную группу = С = О . У альдегидов карбонил связан радикалом и водородом. Общая формула альдегидов: R – C = O У кетонов карбонил связан с двумя радикалами. Общая формула кетонов:

  • Насыщенные альдегиды и кетоны

    Альдегиды и кетоны относятся к карбонильным соединениям (содержат группу >С=О) Они имеют общую формулу: для альдегидов R1=H. Изомерия кетонов связана со строением радикалов и с положением карбонильной группы в углеродной цепи. Кетоны называют по номенклатуре IUPAC называют аналогично альдегидам, но прибавляют окончание -он.

  • Химические свойства альдегидов и кетонов. Реакции окисления и восстановления

    Окисление и восстановление альдегидов и кетонов. Радикальный механизм через образование гидроперекисей. Реакция серебряного зеркала. Устойчивость кетонов к окислению. Окисление по Баеру-Виллегеру. Восстановление боргидридом натрия и изопропиловым спиртом.

  • Синтезы на основе малонового эфира, кислоты Мельдрума и ацетоуксусного эфира

    Строение и схема получения малонового эфира. Синтез ацетоуксусного эфира из уксусной кислоты, его использование для образования различных кетонов. Таутомерные формы и производные барбитуровой кислоты. Восстановление a,b-Непредельных альдегидов и кетонов.

  • Органические соединения

    Реферат 61314.0.1287405047.doc по химии Оглавление. Предельные углеводороды. (Алканы.). Нонан. 2 Непредельные углеводороды (Алкены. Алкины). Нонен-1. 4

  • Реакции альдегидов и кетонов: присоединение углеродных нуклеофилов

    Реакции альдегидов и кетонов. Нуклеофильное присоединение и углеродных нуклеофилов. Присоединение реактивов Гриньяра. Присоединение литийорганических соединений. Присоединение ацетиленидов металлов. Циангидринный синтез. Реакция Реформатского.

  • Альдегиды и кетоны: общие сведения и способы получения

    Карбонилсодержащие или карбонильные соединения - альдегиды и кетоны. Подвижные жидкости. Температуры кипения. Растворимость низших кетонов и альдегидов в воде за счет образования водородных связей. Методы получения. Окисление углеводородов и спиртов.