Название: Основи теорії сигналів
Вид работы: контрольная работа
Рубрика: Коммуникации и связь
Размер файла: 879.52 Kb
Скачать файл: referat.me-169289.docx
Краткое описание работы: Параметри періодичної послідовності імпульсів (форма, тривалість, період повторення, висота) та описання її функції за допомогою рядів Фур'є. Вплив тривалості імпульсів на амплітудно-частотний спектр. Вплив початку відліку часу на фазочастотний спектр.
Основи теорії сигналів
Основи теорії сигналів
Спектральний метод аналізу, заснований на поданні сигналу у вигляді суми (або інтегралу) гармонічних складових (гармонік) і подальшому розрахунку проходження кожної з гармонік через коло. Вихідний сигнал знаходиться на основі принципу накладання у вигляді суми відгуків на кожну з гармонік вхідного сигналу. Сукупність гармонік, на які розкладаються сигнали, називається їх спектрами.
Вивчення спектрів розпочинається з періодичних імпульсних відеосигналів.
Імпульсними називаються струми і напруги кінцевої енергії, миттєві значення яких відмінні від нуля впродовж деякого (як правило, досить невеликого) інтервалу часу.
Періодичні послідовності імпульсів (рис. 1) відносяться до періодичних несинусоїдних процесів і знаходять широке використання в радіоелектроніці.
Рисунок 1 – Періодична послідовність імпульсів
Періодичні послідовності імпульсів характеризуються їх формою, тривалістю ,
періодом повторення
(або частотою
), висотою (максимальним значенням) –
.
Тривалість імпульсів знаходять на деякому рівні від висоти
(у границі на нульовому рівні), або як інтервал часу, в якому міститься визначена потужність імпульсу (зазвичай 90
або більше).
Інколи вводиться також вторинний параметр – щілинність:
.
Періодична послідовність імпульсів, описується функцією, яка задовольняє умови Діріхле і може бути подана нескінченим рядом (рядом Фур’є) гармонік з частотами, кратними частотам слідування
,
:
, (1)
де – комплексна амплітуда
-ї гармоніки,
– постійна складова імпульсів (середнє значення).
Сукупність амплітуд гармонік називають спектром амплітуд або амплітудно-частотним спектром (АЧС).
Сукупність початкових фаз називають спектром фаз або фазочастотним спектром (ФЧС).
АЧС і ФЧС зображують у вигляді графіків, в яких за віссю абсцис відкладають частоту ( або
), а за віссю ординат – амплітуди гармонік у АЧС і початкові фази у ФЧС (рис. 2). Властивістю спектра періодичного коливання є поступове зменшення амплітуд гармонік зі зростанням їх частоти. Це дозволяє оперувати з нескінченними межами сум у (1), а з сумами обмеженими
. Кожній парі ординат графіків АЧС і ФЧС відповідна частота однієї з гармонік, тобто
,
,
повністю визначають параметри цієї гармоніки. Наприклад, на рис. 3 побудована у функції часу друга гармоніка спектра з частотою
, амплітудою
і зсувом максимуму косинусоїди вправо (відносно
) на відрізок часу пропорційний
.
Оскільки середня потужність періодичного сигналу є сумою потужностей гармонічних складових сигналу і потужності сталої складової, ширина спектра визначається частотою коливання з амплітудою , яка ще впливає на значення середньої потужності на заданому рівні:
.
Рисунок 2 – Графіки АЧС (а) і ФЧС (б)
У тих випадках, коли – парна функція часу,
в (1) дорівнює нулю або
. Для непарної функції, навпаки, ряд Фур’є складається тільки із синусоїдних коливань, тобто
дорівнює
або
.
У двох послідовностях імпульсів і
, які відрізняються тільки початком відліку часу, АЧС однакові, а відрізняються тільки їх ФЧС. Дійсно, якщо
, тоді
(2)
Таким чином, при зсуві сигналу на фази його гармоніки змінюється на
.
Як ілюстрації наведемо результати розкладу в ряд Фур’є періодичної послідовності прямокутних імпульсів (рис. 4), яку аналітично можна записати у вигляді:
Рисунок 4 – Періодична послідовність прямокутних імпульсів
На підставі (2) можна подати у вигляді:
. (3)
Обвідна амплітуд спектра визначається значеннями функції:
,
де , при
, тобто
,
і амплітуди гармонік дорівнюють нулю.
Позитивним значенням відповідають нульові значення фаз гармонік, від’ємним – початкові фази рівні
, тому що
, тобто початкові фази гармонік у (3) визначаються як:
Графіки АЧС і ФЧС наведено на рис. 5 Графіки побудовано для щільності . Такі спектри мають назву дискретних.
При змінюванні тривалості імпульсів або частоти їх повторення змінюються і спектри. Рис. 6 ілюструє зміни у спектрах при збільшенні тривалості імпульсів і незмінній частоті повторення
. При збільшенні тривалості імпульсів відбувається «стиснення» спектра – гармонічні складові, які мають найбільші амплітуди, зсуваються в область більш низьких частот. Інтервали між спектральними лініями за частотою не змінюються.
Рис. 7 ілюструє зміни у спектрах при збільшенні періоду і незмінній тривалості імпульсу. Збільшення періоду (зменшення частоти слідування) призводить до зменшення інтервалу між спектральними лініями. При цьому зменшується і амплітуда всіх складових спектра, що фізично пояснюється зменшенням потужності у періодичної послідовності імпульсів.
Якщо спрямувати період до нескінченності, амплітуди зменшаться до нескінченно малих величин, а спектральні лінії наблизяться одна до одної, тобто спектр стане суцільним. Відбудеться перехід від періодичної послідовності до одиночного імпульсу.
Рисунок 6 – Вплив тривалості імпульсів на АЧС
Якщо початок відліку часу не збігається з серединою імпульсів (рис. 8,а), відповідно до формули (3) змінюється тільки ФЧС, як показано на рис. 8,б.
Спектри неперіодичних одиночних сигналів оцінюється, так званою, спектральною густиною , у відповідності з перетворенням Фур’є:
.
Модуль спектральної густини має розмірність В/Гц або А/Гц в залежності від розмірності сигналу (В або А).
Відновлення одиночного сигналу за його спектральною густиною виконується за допомогою оберненого перетворення Фур’є:
.
Рисунок 8 – Вплив початку відліку часу на ФЧС
Спектральна густина одиночного прямокутного імпульсу висотою і тривалістю
описується виразом:
.
Частотна залежність модуля спектральної густини (АЧС) і частотна залежність аргументу спектральної густини
(ФЧС) одиночного прямокутного імпульсу наведені на рис. 9.
Для розрахунку відгук кіл спектральним методом використовують комплексний коефіцієнт передачі кола , який дозволяє визначити вихідні сигнали у випадках:
а) періодичного сигналу –
періодичний послідовність імпульс спектр амплітуда
де ,
,
– комплексна амплітуда, амплітуда і початкова фаза
-ї гармоніки вхідного сигналу відповідно;
,
,
– комплексний коефіцієнт передачі, значення АЧХ і ФЧХ кола для частоти
-ї гармоніки вхідного сигналу відповідно;
б) неперіодичного сигналу –
,
де – спектральна густина вхідного сигналу.
Розглянуті вище сигнали мають спектри в області низьких частот і такі сигнали називають відеосигналами. На відміну від них, радіосигнали з амплітудною, частотною або фазовою модуляцією мають спектри, сконцентровані поблизу носійної частоти .
Рисунок 9 – АЧС (а) і ФЧС (б) одиночного прямокутного імпульсу наведеного на рис. 8,а
Якщо у носійного коливання , амплітуда змінюється за законом
відносно деякого середнього рівня
, формується амплітудно-модульоване коливання (АМК), яке можна записати у вигляді:
,
де постійний коефіцієнт вибраний таким, щоб амплітуда коливань була завжди додатною.
Якщо модулююче коливання містить декілька гармонічних складових, які подані рядом:
, (4)
тоді модульоване коливання набуває вигляду:
, (5)
де величини – парціальні (часткові) коефіцієнти модуляції,
.
Подамо модулюючий сигнал (4) в іншому вигляді, пронормувавши амплітуди гармонік за амплітудою першої гармоніки.
,
де ;
– нормовані амплітуди гармонік.
Тоді у виразі (5) парціальний коефіцієнт модуляції -ї гармоніки можна подати як:
.
Спектр АМК (1) після тригонометричних перетворень набуває вигляду
(6)
Якщо АЧС модулюючого коливання має вигляд, наведений на рис. 2, а), тоді у відповідності до (2) матимемо спектр АМК, представлений на рис. 10.
Рисунок 10 – АЧС амплітудно-модульованого коливання
Таким чином, спектр АМК можна подати як перенесений на носійну частоту спектр модулюючого відеосигналу. Спектр містить носійне коливання і дві бокові смуги частот – «нижню» з частотами і «верхню» з частотами
. Рівень бокових частот визначається відповідними коефіцієнтами глибини модуляції
, а ширина спектра дорівнює
. Такий спектр відповідає радіосигналу.
Частковим випадком АМК є балансна модуляція або амплітудна маніпуляція, коли радіосигнал отримуємо у вигляді:
.
При цьому у випадку модулюючого сигналу з дискретним спектром (4) спектр радіосигналу (2) відрізнятиметься відсутністю носійного коливання.
У випадку, коли балансна модуляція здійснюється неперіодичним сигналом, спектральна густина радіосигналу має вид:
,
де – спектральна густина модулюючого відеосигналу.
Наприклад, спектральна густина радіосигналу на разі модулюючого коливання у вигляді одиночного прямокутного радіоімпульсу за умов балансної модуляції описується виразом:
.
Таким чином, амплітудна маніпуляція одиночним сигналом призводить до переносу спектра модульованого сигналу в область частот .
Наявність від’ємних частот при спектральному аналізі пояснюється комплексною формою запису ряду Фур’є, або інтеграла Фур’є, в яких дійсна змінна часу коливання формується за допомогою векторів, що обертаються як у додатному напрямі з частотою
, так і у від’ємному з частотою
.
Похожие работы
-
Інтегруючі кола фільтр низьких частот
Курс: Комп’ютерна Електроніка Тема: Інтегруючі кола (Фільтр низьких частот) 1. Визначення інтегруючого кола і його призначення Інтегруючим колом (інтегратором) називають ланцюг (чи пристрій), призначений для виконання операції інтегрування, тобто для одержання вихідної напруги
-
Обгрунтування вибору сигналу для систем тропосферного зв`язку з кодо
ОБҐРУНТУВАННЯ ВИБОРУ СИГНАЛУ ДЛЯ СИСТЕМ ТРОПОСФЕРНОГО ЗВ’ЯЗКУ З КОДОВИМ РОЗПОДІЛОМ КАНАЛІВ 1. Основні принципи побудови широкосмугових сигналів Системи зв’язку з шумоподібними сигналами (ШПС) відомі близько чверті століття. За цей час їхні переваги стали очевидними, а їх недоліки усунені. В теперішній час системи зв’язку з ШПС отримують все більше розповсюдження.
-
Методи перетворення біосигналів та аналіз медико-біологічної інформації
Сигнал – процес зміни у часі фізичного стану певного об'єкта, який можна зареєструвати, відобразити та передати; види сигналів: детерміновані, випадкові, періодичні, аналогові. Методи перетворення біосигналів з використанням амплітуд гармонік ряду Фур'є.
-
Передача даних, сигналів звукового мовлення, частотних груп і телевізійних сигналів по цифрових каналах
Метод простого накладення і кодування фронтів передачі низькошвидкісних даних по цифровому каналу. Застосування принципу ковзного індексу - кодування фронтів інформаційних імпульсів. Передача сигналів: телевізійних, частотних груп і звукового мовлення.
-
Типові вхідні сигнали
Характеристика сутності типових вхідних сигналів, які використовуються для теоретичного й експериментального дослідження автоматичних систем. Східчаста, імпульсна, лінійно-зростаюча вхідна дія. Білий шум, імпульсна перехідна функція. Підсилювальна ланка.
-
Цифровий частотомір - хронометр для навчальних дослідів із фізики
Цифровий частотомір-хронометр для навчальних дослідів із фізики Однією з головних тенденцій розвитку навчального експерименту з фізики є поступове залучення для проведення вимірювань цифрових вимірювальних приладів. Про це вже йшлося в нашій попередній статті [4], де увазі читачів запропоновано електронний секундомір із цифровим відліком для навчальних дослідів із фізики.
-
Розкладання в ряд Фур'є несинусоїдальної періодичної функції напруги та дослідження її впливу на лінійне коло
Пошук повного вхідного опору ланцюга щодо затисків. АЧХ і ФЧХ комплексного коефіцієнта передачі по напрузі. Розкладання в ряд Фур'є несинусоїдальної періодичної функції. Побудова лінійчатого амплітудного і фазового спектру вхідної і вихідної напруги.
-
Функціональні і структурні схеми систем радіоавтоматики
Керуюча напруга системи фазового автопідстроювання частоти, яка застосована в радіотехнічних пристроях. Принцип дії системи, її схема. Системи спостереження за часовим положенням імпульсного сигналу. Призначення систем автоматичного регулювання посилення.
-
Дослідження властивостей лiнiйних динамічних кіл
Перетворення сигналів довільної форми лінійними динамічними колами першого порядку в часовій та частотній областях. Визначення перехідної характеристики кола та його реакції на сигнал довільної форми методом інтеграла згортки і частотних характеристик.
-
Частотний (спектральний) опис детермінованих сигналів
Розкладання складної функції в неперервну чи дискретну послідовність простіших, елементарних функцій. Системи ортогональних функцій. Спектральний опис періодичних сигналів. Комплексна форма опису ряду Фур’є. Спектральна функція детермінованих сигналів.