Название: Проектирование высоковакуумной магистрали
Вид работы: курсовая работа
Рубрика: Промышленность и производство
Размер файла: 133.92 Kb
Скачать файл: referat.me-300013.docx
Краткое описание работы: Методика расчета высоковакуумной магистрали. Порядок расчета газовых колонок, выбор и обоснование откачных средств. Расчет проводимости соединительных трубопроводов и оценка совместимости откачных средств. Определение быстроты откачки в трубопроводах.
Проектирование высоковакуумной магистрали
Введение
1. Цель работы : закрепить знания, полученные при изучении дисциплины «Основы вакуумной техники», по проектированию и расчету откачной вакуумной системы технологического оборудования микроэлектроники. Студент должен рассчитать газовые потоки, правильно и обоснованно выбрать откачные средства, рассчитать проводимости соединительных трубопроводов, оценить совместимость откачных средств, определить фактическую быстроту откачки и перепады давления в трубопроводах, а так же на основании проведенных расчетов выбора типоразмеров откачных средств, затворов и вентилей, выполнить чертеж вакуумной системы (в эскизном исполнении).
1. Расчет высоковакуумной магистрали
1.1 Определение стационарного газового потока
,
где - поток газа, определяющийся технологическим выделением газа из нагреваемых элементов внутрикамерных устройств,
- натекание через уплотнения рабочей камеры,
- диффузное газовыделение,
- газовыделение от подложки.
,
,
, где
- газовыделение рабочей камеры,
, [лит-ра 2, стр. 64–65]
- внутренняя поверхность камеры,
где - размеры рабочей камеры,
-размеры присоединительного фланца;
,
, где
- удельное газовыделение материала (Cu) при
заданной температуре, [см. лит-ра 3, стр. 471, приложение]
,
- объем подложкодержателя,
- плотность меди,
, [см. лит-ра 4, стр. 115, табл38]
- время газовыделения;
.
Тогда стационарный газовый поток равен
.
1.2 Предварительный выбор высоковакуумного насоса
Ориентировочная быстрота откачки рабочей камеры диффузионным насосом
.
Быстрота действия диффузионного насоса
,
.
По быстроте действия в диапазоне впускных давлений выбираем насос НВД-1400 с характеристиками (литература 2, стр. 254, табл. 10.6):
Быстрота действия .
Предельное остаточное давление .
Наибольшее выпускное давление .
Расход охлаждающей воды .
Мощность электронагреватель 2,2 кВт.
Габаритные размеры .
Масса .
Объем масла .
Условный проход фланца:
входного .
выходного ;
Требуемая быстрота действия форвакуумного насоса .
1.3 Расчет проводимостей и выбор элементов высоковакуумной магистрали
Расчет проводимости шевронно-конической ловушки
, где
- удельная проводимость ловушки
- (литер. 2, стр. 258, табл. 11.1),
- площадь входного отверстия ловушки
,
- задаваемый размер.
.
Проверим режим течения в ловушке:
давление в ловушке:
, где
- давление на входе в насос
,
– быстрота действия насоса,
.
Выражение – режим молекулярный.
Расчет проводимости трубопровода (е)
Задаем диаметр трубопровода .
Проводимость участка
. [литер. 2, стр. 41, формула. 3.58]
Найдём отношение
[литер. 2, стр. 41, табл. 3.3],
.
Проверим режим течения в трубопроводе (е):
давление в трубопроводе:
.
Выражение – режим молекулярный.
Проводимость затвора
Выбираем затвор РСУ 1 А -200 [литер. 2, стр. 109, табл. 7.1] с проходным диаметром
и проводимостью
.
Проверим режим течения в затворе
давление в затворе:
.
Выражение – режим молекулярный.
Расчет проводимости трубопровода (д)
Задаем диаметр трубопровода .
Проводимость участка
.
Найдём отношение
[литер. 2, стр. 41, табл. 3.3],
.
Проверим режим течения в трубопроводе (д):
давление в трубопроводе:
.
Выражение – режим молекулярный.
Расчёт проводимости вдоль заливной ловушки
Внешний диаметр ловушки , внутренний диаметр ловушки
,
длина ловушки.
Для цилиндрического трубопровода с коаксиальным расположением стержня проводимость вычисляется
.
Проверим режим течения в заливной ловушке
давление в заливной ловушке:
.
Выражение – режим молекулярный.
Расчет проводимости трубопровода (г)
Задаем диаметр трубопровода .
Проводимость участка
.
Найдём отношение
(литер. 2, стр. 41, табл. 3.3),
.
Проверим режим течения в трубопроводе (г)
давление в трубопроводе:
.
Выражение – режим молекулярный.
Проводимость затвора
Выберем затвор
[литер. 2, стр. 109, табл. 7.1] такой же как и
с проходным диаметром
и проводимостью
.
Проверим режим течения в затворе
давление в затворе:
.
Выражение – режим молекулярный.
Расчёт проводимости присоединительного фланца (о)
Проводимость фланца
Проверим режим течения во фланце
давление во фланце:
.
Выражение – режим молекулярный.
Проводимость:
.
Сечение рабочей камеры
Сечение фланца
.
Давление в рабочей камере:
- режим молекулярный
Расчет общей проводимости высоковакуумной магистрали
Время откачки камеры высоковакуумным насосом до предельного давления в камере
где – объем рабочей камеры.
Действительные параметры откачки высоковакуумным насосом
– эффективная быстрота откачки,
– фактическое предельное давление в камере.
Оценка пригодности высоковакуумного насоса
Проводимость затвора
Выберем затвор ЗППл-63 ([2], стр. 109, табл. 7.1) с проходным диаметром
и проводимостью
.
Давление на выходе затвора:
.
Расчет давления в трубопроводе (в) до диафрагмы
Задаем диаметр трубопровода .
Проводимость участка
.
Найдём отношение :
([2], стр. 41, табл. 3.3),
.
Проверим режим течения в трубопроводе (в)
давление в трубопроводе:
.
Выражение – режим молекулярный
Проводимость диафрагмы
.
.
2 . Расчет форвакуумной магистрали
2.1 Предварительный выбор механического насоса
Минимальная быстрота действия механического (форвакуумного) насоса.
.
Выбираем механический насос НВЗ-20 [лит-ра 2, стр. 199, табл. 9.9] с параметрами:
Быстрота действия .
Предельное остаточное давление:
парциальное без газобаласта ,
полное без газобаласта ,
полное с газобаластом .
Объем масла, заливаемого в насос .
Расход воды в рубашке охлаждения – охлаждение воздушное
Частота вращения .
Мощность электродвигателя 2,2кВт.
Число ступеней 1.
Габаритные размеры .
Масса .
Расчет проводимости трубопровода (н) до затвора
.
Задаем диаметр трубопровода .
Проводимость участка
.
Найдём отношение
([2] стр. 41, табл. 3.3),
.
Проверим режим течения в трубопроводе (н):
давление в трубопроводе:
.
Выражение – режим промежуточный.
Проводимость затвора
Выбираем затвор ЗППл-63 с проходным диаметром
и проводимостью
.
Давление на выходе затвора:
.
Расчет проводимости трубопровода (н) после затвора
.
Задаем диаметр трубопровода .
Проводимость участка
.
Найдём отношение
([2], стр. 41, табл. 3.3),
.
Проверим режим течения в трубопроводе (н):
давление в трубопроводе:
.
Выражение – режим промежуточный.
Расчет проводимости трубопровода (л, к)
.
Задаем диаметр трубопровода .
Проводимость участка
.
Найдём отношение
([2], стр. 41, табл. 3.3),
.
Проверим режим течения в трубопроводе (л, к):
давление в трубопроводе:
.
Выражение – режим промежуточный.
Проводимость затвора
Выбираем затвор ЗППл-63 с проходным диаметром
и проводимостью
.
Давление на выходе затвора:
.
Расчет проводимости трубопровода (и)
.
Задаем диаметр трубопровода .
Проводимость участка
.
Найдём отношение
([2], стр. 41, табл. 3.3),
.
Проверим режим течения в трубопроводе (и):
давление в трубопроводе:
.
Выражение – режим вязкостный.
Время откачки камеры форвакуумным насосом
.
.
Расчет общей проводимости форвакуумной магистрали
Диаграмма распределения давления
8 – ВВН; 7 – шевронно-коническая ловушка; 6 – трубопровод (е); 5 – затвор ;
4 – заливная ловушка; 3-трубопровод (г); 2-затвор ; 1 – фланец (о); 0 – рабочая камера;
Элементы системы
Временная циклограмма
![]() |
||||
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() ![]() |
![]() |
![]() |
||
![]() |
![]() |
|||
![]() |
||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
![]() |
![]() |
|||
![]() ![]() |
![]() |
Вакуумная камера
Список используемой литературы
1. Курс лекций по вакуумной технике
2. Фролов Е.С. Справочник «Вакуумная техника. Справочник». 1985 г.
3. А.И. Пипко «Конструирувание и расчёт вакуумных систем». 1979 г.
4. Гетлинг Б.В. «Справочник электротехника». 1961 г.
Похожие работы
-
Совершенствование переделов сорбции урана и регенерации ионообменной смолы на Навоийском горно-металлургическОМ комбинате
В процессе подземного выщелачивания (ПВ) урана продуктивные растворы, поднятые на поверхность из откачных скважин, поступают для ионообменного извлечения урана на противоточные сорбционные напорные колонны типа СНК.
-
Станочные гидроприводы
Министерство высшего и профессионального образования РФ Томский политехнический университет Контрольная работа по Гидравлике и Гидропневмопривода
-
Основные механизмы деградации трубопроводов
Основные механизмы деградации трубопроводов Наиболее характерные механизмы деградации определяются особенностями реакторной установки, материалами, условиями эксплуатации и т.д.
-
Вакуумные насосы: назначение, эксплуатация и ремонт
Рассматриваются основные эксплуатационные характеристики пластинчато-роторных вакуумных насосов, применяемых на химических и нефтеперерабатывающих заводах.
-
Оценка риска для сегмента трубопроводов
Оценка частот повреждения трубопроводов. Анализ структурной надежности. Анализ эксплуатационных данных для трубопроводов.
-
Расчет магистрали трубопровода жидкостного ракетного двигателя
Аннотация Отчет РАСХОД ОКИСЛИТЕЛЯ, РАСХОД ГОРЮЧЕГО, МАГИСТРАЛЬ ГОРЮЧЕГО, МАГИСТРАЛЬ ОКИСЛИТЕЛЯ, ПОТЕРИ ДАВЛЕНИЯ В МАГИСТРАЛЯХ, СТИХИОМЕТРИЧЕСКОЕ СООТНОШЕНИЕ.
-
Теплогазоснабжение микрорайона
теплогазоснабжение микрорайона Исходные данные Город: Новороссийск Температура воды в подающем и обратном теплопроводе соответственно: 143, Начальное и конечное давление газа в сети соответственно:
-
Расчет централизованных вакуумных систем
В централизованных вакуумных системах откачки одним насосом одновременно откачивается несколько объектов подключенных к общему коллектору . Пример централизованной системы является подключение нескольких высоковакуумных насосов к одному форвакуумному насосу . Расчетная схема централизованной откачки показана на рис. 1 .
-
Гидравлический расчёт трубопроводов
Поиск главной магистрали трубопровода методом расчета сложных ответвлений. Вычисление средних гидравлических уклонов на направлениях от начала ответвления к каждому из потребителей. Расчёт участков главной магистрали. Напоры, развиваемые насосами.
-
Проектирование гидросхемы приводов машины для сварки трением
Способы проектирования гидросхемы приводов, которая предназначена для автоматизации основных операций, выполняемых на машине для сварки трением при использовании элементов гидроавтоматики. Подбор гидроцилиндров, выбор насосной станции. Расчет потерь.