Referat.me

Название: Смазка механизмов

Вид работы: контрольная работа

Рубрика: Промышленность и производство

Размер файла: 19.38 Kb

Скачать файл: referat.me-304494.docx

Краткое описание работы: Проверка шпонок на смятие а) Проверяем шпонку колеса [1, c. 265] σcм=FtAсм≤[σ] cм, где Асм – площадь смятия, мм2 Асм=0,94h-t1lp=0,94∙10–645=153мм2,

Смазка механизмов

Проверка шпонок на смятие

а) Проверяем шпонку колеса [1, c. 265]

σc м= FtA см≤[ σ ] c м,

где Асм – площадь смятия, мм2

Асм=0,94 h - t 1 lp =0,94∙10–645=153мм2,

lp– рабочая длина шпонки, мм

lp = l - b =45–15=30 мм,

l – полная длина шпонки, определенная на конструктивной компоновке, мм

σc м=2159153=14 Нмм2≤[ σ ] c м,

d, h, t – стандартные размеры, табл. К42 [1, c. 449];

[σ] cм=100 Н/мм2 – допустимое напряжение на смятие.

б) Проверяем шпонку под элемент открытой передачи

Асм=0,94 h - t 1 lp =0,94∙7–410=25,8 мм2 ,

Lp = L - b =18–8=10 мм,

σсм=946,925,8=36,7Нмм2≤[ σ ] c м.

в) Проверяем шпонку под муфту

Асм=0,94 h - t 1 lp =0,94∙8–540=176 мм2 ,

Lp=L-b=40–12=28 мм,

σcм=2159176=12,27 Нмм2.≤[σ] cм.

Определение размеров корпуса редуктора

а) Толщина стенок и ребер жесткости. В проектируемых малонагруженных редукторах (Т2≤500 Н∙м) с улучшенными передачами толщины стенок и основания корпуса принимаются одинаковыми [1, c. 231];

δ=1,84Т2=1,84223≈7 мм≥6 мм.

Диаметр фундаментного болта выбираем по табл. 10.17 [1, c. 233]; d1=M14;

Диаметры винтов подшипниковой бобышки основания и крышки корпуса d2=M12;

Диаметры винтов основания и крышки корпуса d3=M12;

Диаметры болтов крышки смотрового люка d4=M6.

Длина опорной поверхности L=L1+b1 =256+40= 296 мм;

Ширина b1=К1=40 мм;

Высота ниш под фундаментный винт h1=3d1=3∙14=42 мм [1, c. 234];

Высота фланца подшипниковой бобышки крышки и основания корпуса h2 определяется графически исходя из условий размещения головки винта.

Высота соединительного фланца крышки и основания корпуса h3 [1, c. 239]; h3=2,3d3=2,3∙10=23 мм.

Фланец крышки смотрового люка h5=2..5 мм [1, c. 239];

Внутренний диаметр подшипниковой бобышки быстроходного и тихоходного вала равен внутреннему диаметру фланца для крышки подшипникового узла, а наружный

DБ3=DТ3=DБ+3δ=62+3∙7=81 мм,


Длина гнезда подшипниковой бобышки валов зависит от комплекта подшипникового узла и типа подшипника и определяется графически во взаимосвязи с конструированием корпуса.

Установочные штифты d=(0,7…0,8) d3=0,8∙12=10 мм.

Смазка зубчатых колес, выбор сорта масла, количество, контроль уровня масла

а) Способ смазывания. Для редукторов общего назначения применяют непрерывное смазывание жидким маслом картерным непроточным способом (окунанием). Этот способ выбирают для зубчатых передач при окружных скоростях от 0,3 до 12,5 м/с [1, c. 254].

б) Выбор сорта масла. Выбираем сорт масла по значению расчетного контактного напряжения в зубьях σи=508 Н/мм2 и фактической окружной скорости колеса υ=1,63 м/с. Принимаем И-Г-А-68 индустриальное для гидравлических систем масло без присадок с кинематической вязкостью при 40оС 61…75 мм2 /с.

Для одноступенчатых редукторов при смазывании окунанием объем масляной ванны определяют из расчета 0,4…0,8 л масла на 1кВт передаваемой мощности.

Vном=3,15∙0,6=1,9 л.

в) Определяем уровень масла [1, c. 255]:

При нижнем расположении шестерни

m≤hM=0,25d2,

hM =0,25∙206,6=51,65 мм.

г) Контроль уровня масла. Уровень масла, находящегося в корпусе редуктора, контролируют с помощью жезлового маслоуказателя, которые ставят в зоне нижнего уровня смазки. О наличии масла в корпусе редуктора при данном уровне свидетельствуют метки (min/max) жезлового маслоуказателя.

Смазывание подшипников

Принимаем смазывание пластичными материалами, так как окружная скорость υ2 м/с. Полость подшипника закрыта с внутренней стороны подшипникового узла внутренним уплотнением.

Уплотнительные устройства

Применяют для предотвращения вытекания смазочного материала из подшипниковых узлов, а также защиты их от попадания пыли, грязи и влаги. В зависимости от места установки в подшипниковом узле уплотнения делят на две группы: наружные – устанавливают в крышках и внутренние – устанавливают с внутренней стороны подшипниковых узлов.

а) Наружные уплотнения. В проектируемом редукторе применены для тихоходного вала щелевые уплотнения. Они эффективно работают при любом способе смазывания подшипников, практически при любой скорости, ибо не оказывают сопротивления вращению вала. Щелевые уплотнения надежно удерживают смазочный материал от вытекания под действием центробежной силы. Размер щелевых проточек определяется при выборе соответствующей крышки подшипника по таблице К18 [1, c. 418]. Зазоры щелевых уплотнений заполняют пластичным смазочным материалом, создающим дополнительный жировой заслон для попадания извне пыли и влаги.

На быстроходном валу – резиновые армированные манжеты. Их используют при смазывании подшипников как густым так и жидким материалом при низких скоростях v≤10 м/с, так кА они оказывают сопротивление вращению вала.

б) Внутренние уплотнения. Установка и конструкция внутренних уплотнений зависит от способа смазывания подшипников и конструкции подшипникового узла. При смазывании пластичным материалом подшипниковые узлы должны быть изолированы от внутренней плоскости редуктора во избежание вымывания смазочного материала жидким, применяемым для смазывания зацепления.

В проектируемом редукторе применяем для тихоходного вала мазеудерживающие кольца. Такое уплотнение является комбинированным – центробежным и щелевым одновременно. Выступающий за пределы корпуса участок кольца отбрасывает жидкое масло, остальная цилиндрическая поверхность с проточками удерживает смазочный материал от вымывания.

На быстроходном валу – торцовое уплотнение стальной шайбой. Оно относится к типу контактных и весьма эффективно предохраняет от вытекания смазочного материала и попадания воды и грязи.


Заключение

«Результатом» для редуктора является его нагрузочная способность, в качестве характеристики которой можно принять вращающий момент Т2, Н∙м, на его тихоходном валу [1, c. 275]. Объективной мерой затраченных средств является масса редуктора m, кг, в которой практически интегрирован весь процесс его проектирования. Поэтому за критерий технического уровня можно принять относительную массу, т.е. отношение массы редуктора (кг) к вращающему моменту на его тихоходном валу (Н∙м). Этот критерий характеризует расход материалов на передачу момента.

а) Определяем массу редуктора [1, c. 276].

m = φ ρ V ∙10–9=0,435∙7,4∙103∙17450550∙10–9=55,4 кг,

где φ – коэффициент заполнения по графику 12.1 [1, c. 277].;

– плотность чугуна, кг/м3;

V – условный объем редуктора, мм3;

V=L∙B∙H=390∙157∙285=17450550 мм3 ,

где L – наибольшая длина редуктора, мм;

B – наибольшая ширина редуктора, мм;

H – наибольшая высота редуктора, мм.

б) Определяем критерий технического уровня редуктора

Определяем критерий технического уровня редуктора табл. 12.1 [1, c. 275].

γ=mT2=60223=0,25.

Вывод: Технический уровень редуктора низкий.

Похожие работы

  • Редуктор цилиндрический прямозубый

    Барановичский технологический колледж Редуктор цилиндрический прямозубый Курсовой проект деталям машин РКП.26.25.0000.00.00.ПЗ Разработал Проверил Слесарчук В.А.

  • Одноступенчатый косозубый редуктор

    ЗМІСТ Завдання___________________________________________________________4 Вихідні дані________________________________________________________4

  • Расчёт зоны плавления

    Изучение процессов тепломассопереноса полимера в зоне плавления червячного процесса. Влияние на процесс плавления полимера различных факторов. Анализ закономерностей процесса тепломассопереноса полимера в зоне плавления экструдера, построение графиков.

  • Проектирование одноступенчатого цилиндрического редуктора 2

    ФГОУ ВПО «Башкирский государственный аграрный университет» Факультет: Энергетический Кафедра: теоретической и прикладной механики Специальность: Электрификации и авт с.х.

  • Проектирование привода к конвейеру

    Выбор электродвигателя и кинематический расчет. Расчет ременной передачи. Межосевое расстояние aрем для плоских ремней, допустимое полезное напряжение. Расчет редуктора и валов. Расчет шпоночных соединений и подшипников. Выбор смазки для редуктора.

  • Шпоночные и шлицевые соединения

    Шпоночное соединение образуют вал, шпонка и ступица колеса. Достоинства шпоночных соединений. Соединения призматическими шпонками. Основные критерии работоспособности. Условие прочности на срез. Общие сведения и шлицевых соединениях и их разновидностях.

  • Расчет и проектирование привода (редуктор) с клиноремённой передачей

    Разработка редуктор для передачи крутящего момента от электродвигателя к рабочей машине через муфту и клиноременную передачу. Проектирование редуктора для привода машины или по заданной нагрузке и передаточному числу без указания конкретного назначения.

  • Проектирование механической системы промышленного робота манипулятора

    Проектный расчет вала редуктора рабочей машины. Построение эпюры изгибающих моментов. Подбор подшипника для вала. Подбор размера шпонки. Определение длины концевого участка вала. Редуктором - механизм, состоящий из зубчатых или червячных передач.

  • Привод цепного конвейера

    Проектирование зубчатого редуктора. Привод к лесотаке для лесоперерабатывающей промышленности. Натяжное устройство, цепная и тяговая передачи, цилиндрический редуктор, двигатель, упругая муфта со звездокой. Кинематический и силовой расчет привода.

  • Привод транспортера для перемещения грузов на склад

    Привод ленточного транспортера, его краткое описание и условия его эксплуатации. Принципиальные расчеты: кинематики, закрытой передачи, валов, долговечности подшипников, открытой передачи, шпоночного соединения, тихоходного вала. Выбор соединительных муфт