Referat.me

Название: Параметричний тест Гольдфельда-Квандта

Вид работы: реферат

Рубрика: Информатика

Размер файла: 31.44 Kb

Скачать файл: referat.me-131609.docx

Краткое описание работы: Коли сукупність спостережень невелика, то розглянути вище метод не застосовний. У такому разі Гольдфельд і Квант запропонували розглянути випадок, коли М (ии’)=

Параметричний тест Гольдфельда-Квандта

Коли сукупність спостережень невелика, то розглянути вище метод не застосовний.

У такому разі Гольдфельд і Квант запропонували розглянути випадок, коли М (ии’)= , тобто дисперсія залишків зростає пропорційно до квадрата однієї з незалежних змінних медалі:

Y=ХА=u.

Для виявлення наявності гетероскедастичності згадані вчені склали параметричний тест, в якому потрібно виконати такі кроки.

Крок 1. Упорядкувати спостереження відповідно до величини елементів вектора Хj .

Крок 2. Відкинути с спостережень, які мітять в центрі вектора. Згідно з експериментальними розрахунками автори знайшли оптимальні співвідношення між параметрами с і n, де n– кількість елементів вектора хj :

.

Крок 3. Побудувати дві економетричні моделі на основі 1МНК за двома утвореними сукупностями спостережень обсягом n1 =за умови, що обсяг n2 =перевищує кількість змінних m.

Крок 4. Знайти суму квадратів залишків за першою (1) і другою (2) моделями S1 іS2 :

S1 =uu1 ,

Де u1 – залишки за моделлю (1);

S2 =uu2 ,

Крок 5. Обчислити критерій

,

який в разі виконання гіпотези про гомоскедастичність відповідатиме F-розподілу з (n1 -c-2m)/2, (n2 -c-2m)/2 ступенями свободи. Це означає, що обчислення R* порівнюється з табличним значенням F-критерію для ступенів свободи (n-с-2m)/2 і (n-с-2m)/2 і вибраного рівня довіри. Якщо R*Fтабл, то гетероскедастичність відсутня.

Приклад 1. У табл. 1. наведено дані про загальні витрати та витрати на харчування. Для цих даних перевірити гіпотезу про відсутність гетероскедастичності.

Таблиця 1.

Номер спостереження Витрати на харчування, ум.од. Загальні витрати, ум. од. u u2
1 2,30 15 2,16 0,14 0,020
2 2,20 15 2,16 0,04 0,002
3 2,08 16 2,20 -0,12 0,015
4 2,20 17 2,25 -0,05 0,002
5 2,10 7 2,25 -0,15 0,022
6 2,32 18 2,29 0,26 0,0007
7 2,45 19 2,34 0,11 0,012
8 2,50 20
9 2,20 20
10 2,50 22
11 3,10 64
12 2,50 68 2,37 0,13 0,016
13 2,82 72 2,52 1,29 0,085
14 3,04 80 2,68 0,36 0,128
15 2,70 85 2,99 -0,29 0,084
16 3,94 90 3,18 0,76 0,573
17 3,10 95 3,38 -0,28 0,076
18 3,99 100 3,57 0,42 0,178

Розв’язання.

1. Ідентифікуємо змінні:

Y – витрати на харчування, залежна змінна,

Х – загальні витрати, не6залежна змінна;

Y=f (X,u)

2. Для перевірки гіпотези про відсутність гетероскедастичності застосуємо параметричний тест Гольдфельда-Квандта.

2.1. Упорядкуємо значення незалежної змінної від меншого до більшого і відкинемо с значень, які містяться всередині впорядкованого ряду:

,

2.3. Визначимо залишки за цими двома моделями:

u= YІ - І ;

u= YІІ - ІІ .

Залишки та квадрати залишків наведено в табл. 7.3.

2.4. Обчислимо залишкові дисперсії та знайдемо їх співвідношення:

2.5. Порівняємо критерій R* з критичним значенням F-критерію при і ступенях свободи і рвані довіри Р=0,99 Fа=0,01 =11. Оскільки R*>Fкр , то вихідні дані мають гетероскедастичність.

Непараметричний тести Гольдфельда-Кванта

Гольдфельд і Квант для оцінювання наявності гетероскедастичності запропонували також непараметричний тест. Цей тест базується на числі піків у величини залишків після упорядкування спостережень за хij .

Закономірність зміни залишків, коли дисперсія є однорідною, - явище гемоскедастичності ілюструє рис. 1, а спостерігається явище гетероскедастичності.

Цей тест, звичайно, не такий надійний, як параметричний, але від досить простий.

Похожие работы

  • Організація шин МПС

    Полтавський Військовий Інститут Зв’язку Кафедра схемотехніки радіоелектронних систем ОБЧИСЛЮВАЛЬНА ТЕХНІКА ТА МІКРОПРОЦЕСОРИ напрям підготовки 0924 «Телекомунікації»

  • Задачі нелінійного програмування

    У задачах лінійного програмування, які розглядалися раніше, всі невідомі входили як до системи обмежень, так і до цільової функції, у першому степені. Тому ці задачі були досить простими у постановці і за методами розв'язування.

  • Тренд-аналіз геологічних даних

    В складних умовах геологічної будови об’єктів при мозаїчному характері розподілу локальних аномалій ознаки, яка вивчається, виділення напрямків регіональної тенденції його ззміни часто представляє важку задачу при традиційному графічному зображенні, оскільки при цьому звичайно вносяться суб’єктивні представлення априорних геологічних концепцій.

  • Лінійна залежність n мірних векторів Програма

    Міністерство освіти і науки України ФАКУЛЬТЕТ ІНФОРМАТИКИ КАФЕДРА ФІЗИКО-МАТЕМАТИЧНИХ ДИСЦИПЛІН Реєстраційний №________ Дата ___________________

  • Метод виокреслення лінійно незалежних векторів

    1.Нехай V – не порожня підмножина векторів із Rm, коли з умов А є V, В є V випливає, що при L є R, B є R вектор La+ Bb є V. Візьмемо систему векторів а1, а2..., аn, що належать Rm. Множина всіх лінійних комбінацій цих векторів.

  • Задачі що приводять до похідної Визначення похідної її геометричний і механічний зміст Рівня

    Пошукова робота на тему: Задачі, що приводять до похідної. Визначення похідної, її геометричний і механічний зміст. Рівняння дотичної і нормалі до графіка функції. Частинні похідні функції декількох змінних, їх геометричний зміст.

  • Обернені тригонометричні функції Тригонометричні рівняння і нерівності

    Реферат Н а Т Е М У: “Обернені тригонометричні функції. Тригонометричні рівняння і нерівності” ОБЕРНЕНІ ТРИГОНОМЕТРИЧНІ ФУНКЦІЇ. РОЗВЯЗУВАННЯ НАЙПРОСТІШИХ ТРИГОНОМЕТРИЧНИХ РІВНЯНЬ І НЕРІВНОСТЕЙ

  • Лінійні однорідні диференціальні рівняння другого порядку з постійними коефіцієнтами

    Характеристичне рівняння Загальний розв’язок лінійного однорідного диференціального рівняння з постійними коефіцієнтами 1. Лінійні диференціальні рівняння з сталими коефіцієнтами

  • Проект удосконалення нерентабельного підприємства

    № докум. Підпис Дата Арк. АНОТАЦІЯ В даній роботі проводиться розробка проекту удосконалення нерентабельного підприємства, що спеціалізується на випуску масової продукції. У виробництво впроваджується гнучка виробнича система з метою отримання максимального прибутку.

  • Програмне генерування РВП0 1

    Національний Університет Біоресурсів і Природокористування Кафедра економічної кібернетики Курсова робота: «Програмне генерування РВП(0; 1)» Виконав