Название: Методика расчета развозочных маршрутов
Вид работы: контрольная работа
Рубрика: Логика
Размер файла: 102.58 Kb
Скачать файл: referat.me-204228.docx
Краткое описание работы: МЕЖДУНАРОДНЫЙ СЛАВЯНСКИЙ ИНСТИТУТ НИЖЕГОРОДСКИЙ ФИЛИАЛ Контрольная работа по логистике Выполнила: Студентка гр. ФВ 64 Жердова О.В. Проверил: Д.т.н., профессор
Методика расчета развозочных маршрутов
МЕЖДУНАРОДНЫЙ СЛАВЯНСКИЙ ИНСТИТУТ
НИЖЕГОРОДСКИЙ ФИЛИАЛ
Контрольная работа
по логистике
Выполнила:
Студентка гр. ФВ 64
Жердова О.В.
Проверил:
Д.т.н., профессор
Федоров О.В.
2010 г.
Методика расчета развозочных маршрутов. Потребность в мелкопартионных поставках продукции потребителям с баз и складов систематически возрастает. Поэтому организация маршрутов на отгрузку потребителям мелких партий груза имеет большое значение.
Введем обозначения:
xi – пункты потребления ( i=1,2 … n);
xo – начальный пункт (склад);
q – потребность пунктов потребления в единицах объема груза;
Qd – грузоподъемность транспортных средств;
d– количество транспортных средств;
Cij – стоимость перевозки (расстояние);
j- поставщики (j = 1,2 … M).
Имеются пункты потребления xi (i=1,2 … n). Груз необходимо развести из начального пункта xo (склад) во все остальные (потребители). Потребность пунктов потребления в единицах объема груза составляет: q1, q2, q3 … qn .
В начальном пункте имеются транспортные средства грузоподъемностью Q1 , Q2 … Qd.
При этом d > nв пункте xo
количество груза
, каждый пункт потребления снабжается одним типом подвижного состава.
Для каждой пары пунктов (xi
, xj
) определяется стоимость перевозки (расстояние) Cij
> 0, причем матрица стоимостей в общем случае может быть ассиметричная, т. е. Cij
Cij
.
Требуется найти mзамкнутых путей l1
, l2
, … lm
из единственной общей точки xo
, так чтобы выполнялось условие
Методика составления рациональных маршрутов при расчетах вручную.
![]() |
|

5,0
4,23,2
4,4 3,6 5,6
![]() |
![]() |
![]() |
2,4 1,9 2,0 5,0
![]() |
![]() |
2,0 3,4 5,8
2,8
2,6
Рис. 1.Схема размещения пунктов и расстояния между ними
Потребители продукции | Б | В | Г | Д | Е | Ж | З | И | К |
Объем продукции, кг | 375,0 | 500 | 500 | 300 | 425 | 525 | 575 | 675 | 125 |
Груз находится в пункте А - 4000 кг. Используется автомобиль грузоподъемность 2,5 т; груз – IIкласса (ᵧ = 0,8). Необходимо организовать перевозку между пунктами с минимальным пробегом подвижного состава.
Решение состоит из нескольких этапов:
Этап 1. Строим кратчайшую сеть, связывающую все пункты без замкнутых контуров.
|
4000 кг
375 кг
3,2 км
2,2 км
500 кг
500 кг
2,0 км
3,6 км
300 кг
425 кг 5,0 км
525 кг
2,4 км 2,8 кг
125 кг
2,0 км 2,6 км
575 кг 675 кг
Рис. 2. Кратчайшая связывающая сеть («минимальное дерево»)
Затем по каждой ветви сети, начиная с пункта, наиболее удаленного от начального А (считается по кратчайшей связывающей сети), группируем пункты по маршруту с учетом количества ввозимого груза и грузоподъемности единицы подвижного состава. Причем ближайшие с другой ветви пункты группируем вместе с пунктами данной сети.
Исходя из заданной грузоподъемности подвижного состава Q=2,5, ᵧ = 0,8 все пункты можно сгруппировать так:
Маршрут I | Маршрут II | ||
пункт | объем завоза, кг | пункт | объем завоза, кг |
Б | 375 | Ж | 525 |
В | 500 | Д | 300 |
Е | 425 | И | 675 |
З | 575 | Г | 500 |
К | 125 | ||
итого | 2000 | итого | 2000 |
Сгруппировав пункты по маршрутам, переходим ко второму этапу расчетов.
Этап II. Определяем рациональный порядок объезда пунктов каждого маршрута. Для этого строим таблицу-матрицу, в которой по диагонали размещаем пункты, включаемые в маршрут, и начальный пункт А, а в соответствующих клетках – кратчайшее расстояние между ними. Для примера матрица является симметричной Cij
Cij
, хотя приведенный ниже способ применим для размещения несимметричных матриц.
А | 7,0 | 9,2 | 9,0 | 11,4 | 10,6 |
7,0 | Б | 2,2 | 4,2 | 6,6 | 7,6 |
9,2 | 2,2 | В | 3,6 | 4,4 | 6,4 |
9,0 | 4,2 | 3,6 | Е | 2,4 | 3,4 |
11,4 | 6,6 | 4,4 | 2,4 | З | 2,0 |
10,6 | 7,6 | 6,4 | 3,4 | 2,0 | К |
∑ 47,2 | 27,6 | 25,8 | 22,6 | 26,0 | 30,0 |
Начальный маршрут строим из трех пунктов матрицы АКБА, имеющих наибольшее значение величины, показанных в строке (47,2; 30,0; 27,6), т.е. А; К; Б. Для включения последующих пунктов выбираем из оставшихся пункт,имеющий наибольшую сумму, например З (сумма 25,8), и решаем, между какими пунктами его следует включать, т.е. между А и К, К и Б или Б и А.
Поэтому для каждой пары пунктов необходимо найти величину приращения маршрута по формуле:
kp = Cki + Ci p – Ckp,
где С – расстояние, км; i – индекс включаемого пункта; k – индекс первого пункта из пары; p – индекс второго пункта из пары.
При включении пункта З между первой парой пунктов А и К определяем размер приращения ∆АК при условии, что i = 3, k = А, p = К. Тогда
∆АК = САЗ + СЗК - САК
Подставляя значения из таблицы на стр. 5, получаем, что
∆АК = 11,4 + 2,0 – 10,6 = 2,8
Таким же образом определяем размер приращения ∆КБ, если З включим между пунктами К и Б:
∆КБ = СКЗ + СЗБ – СКБ = 2,0 + 6,6 – 7,6 = 1,0 км,
∆БА, если З включить между пунктами Б и А:
∆БА = СБЗ + СЗА – САБ = 6,0 + 11,4 – 7,0 = 11,0 км
Из полученных значений выбираем минимальное, т. е. ∆КБ= 1,0. Тогда из А-К-Б-А→А-К-З-Б-А. Используя этот метод и формулу приращения, определяем, между какими пунктами расположить пункты В и Е. Начнем с В, так как размер суммы (см. табл. на с. 5) этого пункта больше (27,6 > 22,6):
∆АК = САБ + СВК – САК = 9,2 + 6,4 – 10,6 = 5,0,
∆КЗ = СКВ + СВЗ – СКЗ = 6,4 +4,4 – 2,0 = 8,8,
∆ЗБ = СЗВ + СВБ – СЗБ = 4,4 + 2,2 – 6,6 = 0.
В случае, когда ∆ = 0, для симметричной матрицы расчеты можно не продолжать, так как меньше значение чем 0 получено быть не может. Поэтому пункт В должен быть между пунктами З и Б. Тогда маршрут получит вид: А – К – З – В – Б - А.
В результате проведенного расчета включаем пункт Е между пунктами З и В, так как для этих пунктов мы получим минимальное приращение 1,6:
∆АК = САЕ
+ СЕК
– САК
= 9,0 + 3,4 – 10,6 = 1,8;
∆КЗ = СКЕ + СЕЗ – СКЗ = 3,4 + 2,4 – 2,0 = 3,9;
∆ЗВ = СЗЕ + СЕВ – СЗВ = 2,4 + 3,6 – 4,4 = 1,6;
∆ВБ = СВЕ + СЕБ – СВБ = 3,6 + 4,2 – 2,2 = 5,4;
∆БА = СБЕ + СЕА – СБА = 4,2 + 9,0 – 7,0 = 6,1.
Таким образом, окончательный порядок движения по маршруту Iбудет А – К – З – Е – В – Б – А.
Таким же методом определим кратчайший путь объезда пунктов по маршруту II. В результате расчетов получим маршрут А – Г – Д – И – Ж – А длиной 19,4 км. Порядок движения по маршрутам Iи II приведен на рис.3.
7,0
![]() |
![]() |
2,2 3,2
![]() |
5,6
3,6 I 2,0 II
10,6
2,4 2,8 5,8
2,0
Рис.3. Порядок движения по маршруту I и II
Список литературы
1. Гаджинский А.М. Логистика: Учебник. - М.: Маркетинг, 2008
2. Гаджинский А.М. Практикум по логистике. - М.: Маркетинг, 2007
3. Голиков Е.А. Маркетинг и логистика: Учеб. пособие. - М.: ИНФРА-М, 2008
4. Логистика: Учеб. пособие / Под ред. Б.А. Аникина. - М.: ИНФРА-М, 2004
5. Миротин Л.Б., Сергеев В.И. Основы логистики: учебное пособие. - М.: ИНФРА-М, 2008
6. Неруш Ю.М. Коммерческая логистика: Учебник для вузов. - М.: Банки и биржа, ЮНИТИ, 1997
7. Новиков О.А., Уваров С.А. Логистика: Учеб. пособие. - СПб.: Финансово-экономический универ-т, 2007
Похожие работы
-
Методика расчета развозочных маршрутов 2
МЕЖДУНАРОДНЫЙ СЛАВЯНСКИЙ ИНСТИТУТ НИЖЕГОРОДСКИЙ ФИЛИАЛ Контрольная работа по логистике Выполнила: Студентка гр. ФВ 64 Жердова О.В. Проверил: Д.т.н., профессор
-
Логика. Законы логики. Понятие. Суждение
Нижегородский институт менеджмента и бизнеса Кафедра философии и социальных наук Программированное задание по дисциплине «логика» Выполнила: Студентка 2 курса
-
Информационная логистика 4
ОУП АКАДЕМИЯ ТРУДА И СОЦИАЛЬНЫХ ОТНОШЕНИЙ Нижегородский филиал __________________________________________________________ Заочный факультет
-
по Логике 10
Московский Государственный Университет Печати Контрольная работа по дисциплине ЛОГИКА Выполнила: Студентка группы ЗКЖ2 Савина А.М. Москва 2010 Задание 13.
-
Логистика 14
САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СЕРВИСА И ЭКОНОМИКИ Филиал в г.Тихвин КОНТРОЛЬНАЯ РАБОТА По дисциплине: «Логистика» Вариант № 5 Выполнила:
-
Разделение складских запасов материальных ресурсов с целью рационализации размещения на холодну
Федеральное агентство морского и речного транспорта Федеральное государственное образовательное учреждение высшего профессионального образования
-
Контрольная 2
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УПРАВЛЕНИЯ ИНСТИТУТ ЗАОЧНОГО ОБУЧЕНИЯ Специальность – финансовый менеджмент
-
Транспортировка логистики
Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный
-
Контрольная
Государственный таможенный комитет Российской Федерации Российская таможенная академия ВЛАДИВОСТОКСКИЙ ФИЛИАЛ Кафедра ________________________________________________
-
Обслуживание потребителей и фирм автомобильным транспортом
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Нижегородский Государственный Университет им. Н.И. Лобачевского Механико-математический факультет Курсовая работа на тему: