Название: Стереометрия
Вид работы: доклад
Рубрика: Математика
Размер файла: 13.55 Kb
Скачать файл: referat.me-215013.docx
Краткое описание работы: Определения и свойства двух, трехгранных углов, многогранников.
Стереометрия
Двугранным углом называется фигура, образованная
двумя полуплоскостями с общей ограничивающей их
прямой. Полуплоскости называются гранями , а огра-
ничивающая их прямая - ребром двугранного угла
Линейный угол двугранного угла - угол, образован-
ный двумя плупрямыми, по которым плоскость, пер-
пендикулярная ребру двугранного угла пересекает
его грани по двум полупрямым
Мера двугранного угла не зависит от выбора линей-
ного угла .
Трехгранным уголм (abc) называется фигура, состав-
ленная из 3 плоских углов (ab),(bc),(ac). Эти углы
называются гранями трехгранного угла, а их стороны
- ребрами . Общая вершина плоских углов называется
вершиной трехгранного угла. Двугранные углы, обра-
зованные гранями трехгранного угла, называются дву
гранными углами трехгранного угла .
Аналогично определяется понятие многогранного угла
(A1A2A3...An) - как фигуры, составленной из плоск-
их углов (A1A2),(A2A3)...(AnA1).
Многогранником называется тело, поверхность которо
го состоих из конечного числа плоских многоугольни
ков. Многогранник называется выпуклым , если он ра-
сположен по одну сторону плоскости каждого плоско-
го многоугольника на его пов-ти. Общая часть такой
плоскости и пов-ти выпуклого многогранника называ-
ется гранью . Стороны граней называются ребрами
многогранника, а вершины - вершинами многогранника
2Призмой называется многогранник, который состоит
из 2х плоских многоугольников, совмещаемых парал.
переносом, и всех отрезков, соед. соотв. точки
этих многоугольников.
Основания призмы равны т.к. пар. пер. = движ.
Многогранники называются основаниями призмы, а отр
езки, соед. соотв. вершины - боковыми ребрами при-
змы . У призмы основания лежат в || плоскостях. Бо-
ковые ребра || и =. Боковая пов-ть сост. из парал-
лелограммов .
Высота призмы - расстояние, между полск. ее основ.
Диагональ - отрезок, соед. 2 верш. не принадл 1 гр
Диагональное сечение - сечение плоск. кот. прох.
через боковых ребра, не принад. 1 грани.
У прямой призмы - боков. ребра + основ. (наклонн.)
Прямая призма - правильная , если ее основ, являют.
правильными многоугольниками.
Площадью боковой пов-ти призмы назыв. сумму площад
боковых граней. Полная поверхность призмы = сумме
боковой пов-ти и площадей основания.
n - грани, диаг=n-3/(n-3)n (на одн./всего)
Похожие работы
-
Теорема Эйлера для простых многогранников
Многогранником называется тело в пространстве, ограниченное поверхностью, которую образуют многоугольники, при этом выполняются условия.
-
Правильные многогранники
Определение правильного многогранника. Определение. Многогранник называется правильным, если: 1) он выпуклый; 2) все его грани – равные друг другу правильные многоугольники; 3) в каждой его вершине сходится одинаковое число ребер; 4) все его двугранные равны.
-
Элементы сферической геометрии
На протяжении многих веков человечество не переставало пополнять свои научные знания в той или иной области науки. Стереометрия, как наука о фигурах в пространстве, неотъемлемо связана со многими из научных дисциплин.
-
Объем фигур вращения правильных многогранников
Фигуры вращения правильных многогранников, использование их теории. Виды поверхностей в фигурах вращения. Теорема о пересечении гиперболической и цилиндрической поверхностей вращения. Классификация задач на вращение многогранников и вычисление объемов.
-
Многогранники
На тему: «Тела Платона» «Правильные многогранники» Выполнил ученик 10«А» класса Преподаватель Школы№528 ЦАО г. Москвы Сурин М. Н. Савельев К. А. Москва 3.03.1999 год
-
Билеты по геометрии для 9 класса (2002г.)
Билеты по геометрии 9 класса БИЛЕТ 1 1.Определение вертикальных углов. Свойство вертикальных углов. Определение смежных углов. Свойство смежных углов.
-
Правильные многогранники или тела Платона
Платону принадлежит разработка некоторых важных проблем математического познания: аксиоматическое построение математики, исследование отношений между математическими методами и диалектикой, анализ основных форм математического знания.
-
Правильные и полуправильные многогранники
Правильным многогранником называется выпуклый многогранник, грани которого – равные правильные многоугольники, а двугранные углы при всех вершинах равны между собой.
-
Основные виды многогранников и их свойства
Понятие многогранной поверхности, виды многоугольников. Грани, стороны и вершины многогранников. Свойства пирамиды, призмы и параллелепипеда. Объем многогранника, его измерение с помощью выбранной единицы измерения объемов. Основные свойства объемов.
-
Многогранник максимального объема
Определение развертки многогранника, теорема о развертке А.Д. Александрова. Теорема Д. Бликера, рассматривающая два правильных многогранника - куб и додекаэдр, условие треугольности граней как технический момент, позволивший доказать свою теорему.