Referat.me

Название: Теорема Эйлера для простых многогранников

Вид работы: реферат

Рубрика: Математика

Размер файла: 45.38 Kb

Скачать файл: referat.me-218517.docx

Краткое описание работы: Многогранником называется тело в пространстве, ограниченное поверхностью, которую образуют многоугольники, при этом выполняются условия.

Теорема Эйлера для простых многогранников

Теорема Эйлера для простых многогранников

Думаю, что такое многогранник, представляют все. Но все же давайте определим его точнее.

Определение. Многогранником называется тело в пространстве, ограниченное поверхностью, которую образуют многоугольники, при этом выполняются условия:

1. каждая сторона любого многоугольника является стороной другого многоугольника, причем только одного;

2. многоугольники с общей вершиной образуют цепочку, в которой два соседних многоугольника имеют общую сторону.

Многоугольники называются гранями многогранника, их стороны называются ребрами, а вершины — вершинами многогранника.

Многогранник называется выпуклым, если для любых двух точек, которые он содержит, отрезок, соединяющий эти две точки, также целиком принадлежит многограннику.

Многогранник называется простым, если он не имеет дыр. Другими словами, любая замкнутая кривая на поверхности многогранника стягивается в точку, принадлежащую поверхности. При этом в процессе стягивания кривая всегда лежит на поверхности многогранника.

Из выпуклости следует простота, но не наоборот.

Примером простого многогранника является куб. А вот если рассмотреть куб, у которого вырезан еще один куб, размером поменьше, так что оба куба имеют общий центр симметрии, то такой многогранник не будет простым.

Теорема Эйлера устанавливает связь между числом вершин , числом ребер и числом граней простого многогранника. Формула Эйлера весьма красива. Она справедлива также для планарных графов.

Интересно, что Эйлер, опубликовавший свою теорему в 1751 году, переоткрыл то, что в 1639 году практически доказал Декарт. Он доказал, что сумма величин всех углов всех граней многогранника равна и что в то же время она равна , откуда сразу же следует формула Эйлера (надо сказать, что Декарт ее в таком виде не получил).

Теорема Эйлера. Для простого многогранника

Доказательство. Удалим одну из граней многогранника. Теперь деформируем оставшуюся поверхность в плоскую сеть (собственно, это и есть планарный граф), состоящую из точек и кривых. Не умаляя общности, можно считать, что деформированные ребра являются отрезками. При этом число вершин, ребер и граней не изменится, если считать, что внешняя для сети часть плоскости соответствует удаленной грани.

Теперь последовательно применим преобразования, которые будут упрощать полученную сеть, не изменяя эйлеровой характеристики, т.е. числа .

1. Если есть многоугольная грань с более, чем тремя, сторонами, проведем диагональ. Это добавит одно ребро и одну грань. Будем добавлять ребра, пока все грани не станут треугольниками.

2. Будем удалять по одному треугольники, у которых две стороны являются границами с внешней областью. Тем самым, удаляется вершина, два ребра и одна грань.

3. Удалим треугольники, одна сторона которых общая с внешней гранью. Это уменьшает количество ребер и граней на один, при этом число вершин не изменяется.

Будем последовательно применять преобразования 2 и 3 до тех пор, пока не останется один треугольник. Для него (считая внешнюю грань), . Следовательно, , что и доказывает теорему.

Замечание. Приведенное доказательство принадлежит Коши.

Похожие работы

  • Конус, и все что с ним связано

    КОНУС 1. Понятие конуса: тело, ограниченное конической поверхностью и кругом с границей L, называется конусом. Коническая поверхность называется боковой поверхностью конуса, а круг – основанием конуса

  • Правильные многогранники

    Определение правильного многогранника. Определение. Многогранник называется правильным, если: 1) он выпуклый; 2) все его грани – равные друг другу правильные многоугольники; 3) в каждой его вершине сходится одинаковое число ребер; 4) все его двугранные равны.

  • Геометрические фигуры

    Геометрия - наука, давшая людям возможность находить площади и объемы, правильно чертить проекты зданий и машин. Таким образом, она является основной частью «фундамента», на котором строится другое не менее важное направление деятельности человека - архитектура.

  • Объем фигур вращения правильных многогранников

    Фигуры вращения правильных многогранников, использование их теории. Виды поверхностей в фигурах вращения. Теорема о пересечении гиперболической и цилиндрической поверхностей вращения. Классификация задач на вращение многогранников и вычисление объемов.

  • Цилиндр и конус

    Определения и свойства цилиндра и конуса.

  • Правильные многогранники или тела Платона

    Платону принадлежит разработка некоторых важных проблем математического познания: аксиоматическое построение математики, исследование отношений между математическими методами и диалектикой, анализ основных форм математического знания.

  • Правильные и полуправильные многогранники

    Правильным многогранником называется выпуклый многогранник, грани которого – равные правильные многоугольники, а двугранные углы при всех вершинах равны между собой.

  • Основные виды многогранников и их свойства

    Понятие многогранной поверхности, виды многоугольников. Грани, стороны и вершины многогранников. Свойства пирамиды, призмы и параллелепипеда. Объем многогранника, его измерение с помощью выбранной единицы измерения объемов. Основные свойства объемов.

  • Стереометрия

    Определения и свойства двух, трехгранных углов, многогранников.

  • Многогранники 2

    Человек проявляет интерес к многогранникам на протяжении всей своей сознательной деятельности – от двухлетнего ребёнка, играющего деревянными кубиками, до зрелого математика. Особый интерес к правильным многоугольникам и правильным многогранникам связан с красотой и совершенством формы. Они довольно часто встречаются в природе.