Referat.me

Название: Квадратные формы

Вид работы: реферат

Рубрика: Математика

Размер файла: 12.95 Kb

Скачать файл: referat.me-215091.docx

Краткое описание работы: Лекция 10. Квадратичные формы и их связь с симметричными матрицами. Свойства собственных векторов и собственных чисел симметричной матрицы. Приведение квадратичной формы к каноническому виду.

Квадратные формы

Лекция 10. Квадратичные формы и их связь с симметричными матрицами. Свойства собственных векторов и собственных чисел симметричной матрицы. Приведение квадратичной формы к каноническому виду.

Определение 10.1. Квадратичной формой действительных переменных х1, х2,…,хn называется многочлен второй степени относительно этих переменных, не содержащий свободного члена и членов первой степени.

Примеры квадратичных форм:

(n = 2),

(n = 3). (10.1)

Напомним данное в прошлой лекции определение симметрической матрицы:

Определение 10.2. Квадратная матрица называется симметрической, если , то есть если равны элементы матрицы, симметричные относительно главной диагонали.

Свойства собственных чисел и собственных векторов симметрической матрицы:

1) Все собственные числа симметрической матрицы действительные.

Доказательство (для n = 2).

Пусть матрица А имеет вид: . Составим характеристическое уравнение:

(10.2) Найдем дискриминант:

следовательно, уравнение имеет только действительные корни.

2) Собственные векторы симметрической матрицы ортогональны.

Доказательство (для n = 2).

Координаты собственных векторов и должны удовлетворять уравнениям:

Следовательно, их можно задать так:

. Скалярное произведение этих векторов имеет вид:

По теореме Виета из уравнения (10.2) получим, что Подставим эти соотношения в предыдущее равенство: Значит, .

Замечание. В примере, рассмотренном в лекции 9, были найдены собственные векторы симметрической матрицы и обращено внимание на то, что они оказались попарно ортогональными.

Определение 10.3. Матрицей квадратичной формы (10.1) называется симметрическая матрица . (10.3)

Таким образом, все собственные числа матрицы квадратичной формы действительны, а все собственные векторы ортогональны. Если все собственные числа различны, то из трех нормированных собственных векторов матрицы (10.3) можно построить базис в трехмерном пространстве. В этом базисе квадратичная форма будет иметь особый вид, не содержащий произведений переменных.

Приведение квадратичной формы к каноническому виду

Определение 10.4. Каноническим видом квадратичной формы (10.1) называется следующий вид: . (10.4)

Покажем, что в базисе из собственных векторов квадратичная форма (10.1) примет канонический вид. Пусть

- нормированные собственные векторы, соответствующие собственным числам λ1,λ2,λ3 матрицы (10.3) в ортонормированном базисе . Тогда матрицей перехода от старого базиса к новому будет матрица

. В новом базисе матрица А примет диагональный вид (9.7) (по свойству собственных векторов). Таким образом, преобразовав координаты по формулам:

,

получим в новом базисе канонический вид квадратичной формы с коэффициентами, равными собственным числам λ1, λ2, λ3:

. (10.5)

Замечание 1. С геометрической точки зрения рассмотренное преобразование координат представляет собой поворот координатной системы, совмещающий старые оси координат с новыми.

Замечание 2. Если какие-либо собственные числа матрицы (10.3) совпадают, к соответствующим им ортонормированным собственным векторам можно добавить единичный вектор, ортогональный каждому из них, и построить таким образом базис, в котором квадратичная форма примет канонический вид.

Пример.

Приведем к каноническому виду квадратичную форму

x² + 5y² + z² + 2xy + 6xz + 2yz.

Ее матрица имеет вид В примере, рассмотренном в лекции 9, найдены собственные числа и ортонормированные собственные векторы этой матрицы:

Составим матрицу перехода к базису из этих векторов:

(порядок векторов изменен, чтобы они образовали правую тройку). Преобразуем координаты по формулам:

.

Получим:

Итак, квадратичная форма приведена к каноническому виду с коэффициентами, равными собственным числам матрицы квадратичной формы.

||Оглавление||

Похожие работы

  • Квадратичные формы 3

    ОГЛАВЛЕНИЕ Введение…………………………………………..................................................3 1 Теоретические сведения о квадратичных формах……………………………4

  • Собственные вектора и собственные значения линейного оператора

    Понятие собственных векторов и собственных значений, их свойства и характеристики, порядок нахождения собственных векторов оператора. Критерии определения независимости и ортогональности собственных векторов. Факторы и теоремы положительных матриц.

  • Канонический вид произвольных линейных преобразований

    Особенности нормальной формы линейного преобразования. Изучение собственных и присоединенных векторов линейного преобразования. Выделение подпространства, в котором преобразование А имеет только одно собственное значение. Анализ инвариантных множителей.

  • Квадратичные формы 2

    Содержание Теория 1.1 Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 n-мерное векторное пространство. Преобразование

  • Квадратичные формы

    Оглавление. Введение…………………………………………………………………2 Глава 1. Теоретическая часть…………………………………………4 1.1. Квадратичная форма и ее матрица………………………………4

  • Численное решение алгебраических проблем собственных значений

    : степенной метод. Екатеринбург 2006 Введение Выбор наиболее эффективного метода определения собственных значений и собственных векторов для конкретной инженерной задачи зависит от ряда факторов, таких, как тип уравнений, число искомых собственных значений и их характер. Различают полную (алгебраическую) проблему собственных значений, предполагающую нахождение всех собственных пар {λ, v} матрицы А, и частичную проблему собственных значений, состоящую как правило, в нахождении одного или нескольких собственных чисел λ и, соответствующих им собственных векторов v.

  • Вычисление характеристических многочленов собственных значений и собственных векторов

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ СУМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ИНФОРМАТИКИ Курсовая работа по дисциплине «Численные методы»

  • Собственные значения.

    Некоторые основные сведения, необходимые при решении задач на собственные значения. Итерационные методы решения. Определение собственных значений методами преобразований подобия.

  • Матричный анализ

    Курс лекций по дисциплине «Матричный анализ» для студентов II курса математического факультета специальности «Экономическая кибернетика» (лектор Дмитрук Мария Александровна)

  • Кривые второго порядка. Квадратичные формы

    Понятие квадратичной формы и способы ее записи. Действительные и недействительные, вырожденные и невырожденные формы, ранг матрицы. Знакоопределенность квадратичных форм, определение ее миноров. Критерии положительной и отрицательной определенностей.