Название: Кривые второго порядка. Квадратичные формы
Вид работы: контрольная работа
Рубрика: Математика
Размер файла: 38.58 Kb
Скачать файл: referat.me-214622.docx
Краткое описание работы: Понятие квадратичной формы и способы ее записи. Действительные и недействительные, вырожденные и невырожденные формы, ранг матрицы. Знакоопределенность квадратичных форм, определение ее миноров. Критерии положительной и отрицательной определенностей.
Кривые второго порядка. Квадратичные формы
Высшая математика
Кривые второго порядка
Квадратичные формы
Содержание
1. Понятие квадратичной формы и способы ее записи
2. Знакоопределенность квадратичных форм
3. Критерии положительной и отрицательной определенностей
Литература
1. Понятие квадратичной формы и способы ее записи
Квадратичной формой j (х1 , х2 , …, xn ) n действительных переменных х1 , х2 , …, xn называется сумма вида
,(1)
где aij – некоторые числа, называемые коэффициентами. Не ограничивая общности, можно считать, что aij = aji .
Квадратичная форма называется действительной, если aij Î ГR. Матрицей квадратичной формы называется матрица, составленная из ее коэффициентов. Квадратичной форме (1) соответствует единственная симметричная матрица
то есть АТ = А. Следовательно, квадратичная форма (1) может быть записана в матричном виде j(х) = хТ Ах, где
хТ = (х1 х2 … xn ). (2)
И, наоборот, всякой симметричной матрице (2) соответствует единственная квадратичная форма с точностью до обозначения переменных.
Рангом квадратичной формы называют ранг ее матрицы. Квадратичная форма называется невырожденной, если невырожденной является ее матрица А. (напомним, что матрица А называется невырожденной, если ее определитель не равен нулю). В противном случае квадратичная форма является вырожденной.
Пример 1.
Записать матрицу квадратичной формы
j (х1
, х2
, x3
) = – 6х1
х2
– 8х1
х3
+
+ 4х2
х3
–
и найти ее ранг.
Решение.
Þr(A) = 3 Þ
квадратичная форма невырождена.
2. Знакоопределенность квадратичных форм
Квадратичная форма (1) называется положительно определенной (или строго положительной), если j(х) > 0, для любого х = (х1 , х2 , …, xn ), кроме х = (0, 0, …, 0).
Матрица А положительно определенной квадратичной формы j(х) также называется положительно определенной. Следовательно, положительно определенной квадратичной форме соответствует единственная положительно определенная матрица и наоборот.
Квадратичная форма (1) называется отрицательно определенной (или строго отрицательной), если j(х) < 0, для любого х = (х1 , х2 , …, xn ), кроме х = (0, 0, …, 0).
Аналогично как и выше, матрица отрицательно определенной квадратичной формы также называется отрицательно определенной.
Следовательно, положительно (отрицательно) определенная квадратичная форма j(х) достигает минимального (максимального) значения j(х*) = 0 при х* = (0, 0, …, 0).
Отметим, что большая часть квадратичных форм не является знакоопределенными, то есть они не являются ни положительными, ни отрицательными. Такие квадратичные формы обращаются в 0 не только в начале системы координат, но и в других точках.
Пример 2.
Определить знакоопределенность следующих квадратичных форм.
1)
Þ
т. е. квадратичная форма является положительно определенной.
2)
Þ
т. е. квадратичная форма является отрицательно определенной.
3)
Þ
данная квадратичная форма не является знакоопределенной, так как она равна 0 во всех точках прямой х1 = –х2 , а не только в начале системы координат.
Когда n > 2 требуются специальные критерии для проверки знакоопределенности квадратичной формы. Рассмотрим их.
Главными минорами квадратичной формы называются миноры:
то есть это миноры порядка 1, 2, …, n матрицы А, расположенные в левом верхнем углу, последний из них совпадает с определителем матрицы А.
3. Критерий положительной и отрицательной определенности
Критерий положительной определенности (критерий Сильвестра)
Для того чтобы квадратичная форма j(х) = хТ Ах была положительно определенной, необходимо и достаточно, что все главные миноры матрицы А были положительны, то есть:
М1 > 0, M2 > 0, …, Mn > 0.
Критерий отрицательной определенности
Для того чтобы квадратичная форма j(х) = хТ Ах была отрицательно определенной, необходимо и достаточно, чтобы ее главные миноры четного порядка были положительны, а нечетного – отрицательны, то есть:
М1 < 0, M2 > 0, М3 < 0, …, (–1)n Mn > 0.
Пример 3.
При каких значениях а и в квадратичная форма будет положительно определенной?
j (х1
, х2
, x3
) =
Решение.
Построим матрицу А и найдем ее главные миноры.
М1
= 1 > 0,
= а – 1 > 0 Þ а > 1.
= ав – а – в > 0 Þв >
.
Ответ:
а > 1, в > .
Пример 4.
При каких значениях а и в квадратичная форма будет отрицательно определенной?
j (х1
, х2
, x3
) =
Решение.
М1
= –1 < 0,
= –а – 1 > 0 Þ а < –1.
= –ав – а – в < 0 Þв > –
.
Ответ
а < –1, в > –.
Пример 5.
Доказать, что квадратичная форма
j (х1
, х2
, x3
) =
положительно определена.
Решение.
Воспользуемся критерием Сильвестра. Построим матрицу А и найдем главные миноры матрицы А.
М1
= 6 > 0, = 26 > 0, М3
= ú А ç = 162 > 0
Þj (х1 , х2 , x3 )
положительно определенная квадратичная форма.
Литература
1. Гусак А. А. Аналитическая геометрия и линейная алгебра.– Мн.: Тетрасистемс, 1998.
2. Овсеец М. И., Светлая Е. М. Сборник задач по высшей математике. Учебное издание.– Мн.: ЧИУиП, 2006.– 67 с.
Похожие работы
-
Квадратичные формы 3
ОГЛАВЛЕНИЕ Введение…………………………………………..................................................3 1 Теоретические сведения о квадратичных формах……………………………4
-
Кривые второго порядка
Эллипс, гипербола, парабола как кривые второго порядка, применяемые в высшей математике. Понятие кривой второго порядка - линии на плоскости, которая в некоторой декартовой системе координат определяется уравнением. Теоремма Паскамля и теорема Брианшона.
-
Матрицы
Общие определения, связанные с понятием матрицы. Действия над матрицами. Определители 2-го и 3-го порядков, порядка n, порядок их вычисления и характерные свойства. Обратные матрицы и их ранг. Понятие и этапы элементарного преобразования матрицы.
-
Квадратичные формы 2
Содержание Теория 1.1 Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 n-мерное векторное пространство. Преобразование
-
Квадратичные формы
Оглавление. Введение…………………………………………………………………2 Глава 1. Теоретическая часть…………………………………………4 1.1. Квадратичная форма и ее матрица………………………………4
-
Неединственность преобразований Лоренца.
Основа физики – геометрия. Она определяет способы задания координат. Преобразования их единственны и это преобразования Лоренца внутри изотропного конуса. На поверхности изотропного конуса эти преобразования не обладают единственностью. Расстояние света.
-
Опыт применения критерия Сильвестра в некоторых задачах устойчивости консервативных систем
Краткая биография английского математика Дж. Сильвестра. Устойчивость равновесия консервативной системы с конечным числом степеней свободы. Функции Ляпунова и критерий Сильвестра. Пример определения условия устойчивости равновесного положения системы.
-
Квадратные формы
Лекция 10. Квадратичные формы и их связь с симметричными матрицами. Свойства собственных векторов и собственных чисел симметричной матрицы. Приведение квадратичной формы к каноническому виду.
-
Алгебра матриц
Основные понятия. Линейные операции над матрицами. Умножение матриц. Свойства умножения матриц. Вырожденные и невырожденные матрицы.
-
Матрицы и определители
Матрицы. Операции над матрицами. Определители. Теорема (разложение определителя по строке или столбцу).. Ранг матрицы. Обратная матрица.