Название: Визначення та обчислення довжини дуги плоскої кривої в декартових та полярних координатах. Площа
Вид работы: реферат
Рубрика: Математика
Размер файла: 44.42 Kb
Скачать файл: referat.me-215306.docx
Краткое описание работы: Пошукова робота на тему: Визначення та обчислення довжини дуги плоскої кривої в декартових та полярних координатах. Площа поверхні. План Довжина дуги кривої в декартових і полярних координатах
Визначення та обчислення довжини дуги плоскої кривої в декартових та полярних координатах. Площа
Пошукова робота на тему:
Визначення та обчислення довжини дуги плоскої кривої в декартових та полярних координатах. Площа поверхні.
П лан
- Довжина дуги кривої в декартових і полярних координатах
- Площа поверхні
- Площа поверхні обертання
- Площа циліндричної поверхні
10.3. Довжина дуги
Це питання для кривої , заданої рівнянням , вже розглядалося в п.9.1. Там була знайдена формула
(10.9)
Якщо крива задана параметрично, тобто у вигляді то
(10.10)
Для просторової кривої, заданої параметрично , довжина дуги обчислюється за формулою
(10.11)
аналогічно формулі (10.10). Виведення цієї формули базується на розгляді елемента дуги, кінці якої збігаються з кінцями діагоналі паралелепіпеда, а саме, діагональ є хордою елемента дуги.
У випадку задання кривої в полярній системі координат , матимемо
(10.12)
Пропонується вивести цю формулу, узявши до уваги, що рівняння кривої в полярних координатах можна записати як параметричні з параметром q :
і використавши формулу (10.10).
Приклад 1. Обчислити довжину кривої, заданої рівнянням .
Р о з в ‘ я з о к.Досить обчислити довжину дуги, що обмежує зверху заштриховану на рис.10.7 фігуру, а потім помножити її на 8. Користуючись формулою (10.12), одержимо
10.4. Площа поверхні
10.4.1. Площа поверхні обертання
Довжина дуги, що обмежує смужку зверху (рис.10.9),
Ця дуга в разі обертання утворить поверхню обертання, площа якої дорівнюватиме бічній поверхні конуса, який має висоту , а радіуси основ його . Тоді площа поверхні цього конуса нескінченно малої висоти
Нескінченно малою вищого порядку нехтуємо і в результаті одержимо звідки
(10.7)
10.4.2. Площа циліндричної поверхні
На рис. 10.10 зображено циліндричну поверхню з твірними, паралельними осі . Нехай ця поверхня задана рівняннями
Рис.10.9 Рис.10.10
Виділивши смужку так, як показано на рис. 10.10 , знайдемо її площу
(10.8)
Зауваження 1. При одержанні формул (10.1) – (10.2), (10.4) – (10.8) виділені елементи фігур вважалися прямокутниками (див. рис. 10.1, 10.4,10.5 ), сектором з центральним кутом ( рис. 10.2), тонким циліндричним шаром (рис. 10.3), що не вплинуло на остаточний результат, бо такі заміни реальних фігур здійснюються нехтуванням нескінченно малих величин вищих порядків. Цей факт можна було б строго довести.
Приклад . Еліпс із великою піввіссю і малою піввіссю робить один оберт навколо великої осі і вдруге – навколо малої осі. Визначити поверхню обертання еліпса в кожному з двох випадків.
Р о з в ‘ я з о к.Досить розглянути лише половину еліпса:
В результаті обертання навколо великої осі одержимо за (11.7)
де - ексцентриситет еліпса.
За допомогою підстановки матимемо
У випадку обертання навколо малої осі для обчислення поверхні обертання одержуємо інтеграл
В обох випадках поверхня еліпсоїда виразилась через елементарні функції.
Похожие работы
-
Формулы по математическому анализу
Формулы дифференцирования Таблица основных интегралов Правила интегрирования Основные правила дифференцирования Пусть С—постоянная, u=u(x), v=v(x) – функции, имеющие
-
Інтегральні характеристики векторних полів
інтегральні характеристики векторних полів 1. Диференціальні операції другого порядку Нехай в області задані скалярне поле і векторне поле , причому функції
-
Наближене обчислення означених інтегралів формули прямокутників трапецій Сімпсона
Пошукова робота на тему: Наближене обчислення означених інтегралів: формули прямокутників, трапецій, Сімпсона. План Наближене обчислення означених інтегралів
-
Сліди і базиси розширеного поля
Методика проведення операції в розширених полях. Сліди і базиси розширеного поля. Двійкове подання елементів у поліноміальному і нормальному базисах. Подання точок кривої у різних координатних системах. Складність арифметичних операцій у групах точок ЕК.
-
Невласні подвійні інтеграли
Поняття та способи розв’язку невласного подвійного інтегралу. Теорема про абсолютну збіжність невласного подвійного інтеграла. Інтеграли від необмежених функцій. Приведення подвійного інтеграла до повторного. Заміна змінних в невласних інтегралах.
-
Геометричні фігури на площині та їх площі
Геометричні фігури, що розглядаються в планіметрії - розділі геометрії, в якому вивчають фігури на площині. Визначення кута, трикутника, квадрата, чотирикутника, ромба, паралелограма, трапеції, багатокутника та їх площ античними та сучасними методами.
-
Дослідження кривої й форми поверхні другого порядку
Курсова робота Дослідження кривої й форми поверхні другого порядку Зміст ВВЕДЕННЯ ДОСЛІДЖЕННЯ КРИВОЇ ДРУГОГО ПОРЯДКУ Теоретична частина Практична частина
-
Застосування подвійних інтегралів
Заміна змінних у подвійному інтегралі. Подвійний інтеграл у полярних координатах. Застосування формул перетворення координат та оберненого перетворення. Функціональний визначник Якобі або якобіан. Подвійні інтеграли в рішенні задач з геометрії й механіки.
-
Задачі, що приводять до поняття означеного інтеграла. Формулювання теореми існування
Пошукова робота на тему: Задачі, що приводять до поняття означеного інтеграла. Формулювання теореми існування. План Задачі, що приводять до поняття визначеного інтеграла
-
Застосування програмних засобів GRAN1 та GRAN-2D на уроках алгебри
Виявлення можливості практичного застосування програмних засобів і комп’ютерних презентацій на уроках математики в ході побудови графіків функцій, що містять змінну під знаком модуля. Особливості застосування програм GRAN1 і GRAN-2D, розроблених Жалдаком.