Referat.me

Название: Застосування подвійних інтегралів

Вид работы: контрольная работа

Рубрика: Математика

Размер файла: 213.7 Kb

Скачать файл: referat.me-215903.docx

Краткое описание работы: Заміна змінних у подвійному інтегралі. Подвійний інтеграл у полярних координатах. Застосування формул перетворення координат та оберненого перетворення. Функціональний визначник Якобі або якобіан. Подвійні інтеграли в рішенні задач з геометрії й механіки.

Застосування подвійних інтегралів

Застосування подвійних інтегралів

Содержание

1. Заміна змінних у подвійному інтегралі. Подвійний інтеграл у полярних координатах

2. Застосування подвійних інтегралів до задач геометрії

3. Застосування подвійних інтегралів до задач механіки

1. Заміна змінних у подвійному інтегралі. Подвійний інтеграл у полярних координатах

Нехай функція неперервна в деякій замкненій і обмеженій області ,тоді існує інтеграл

.

Припустимо, що за допомогою формул

(1)

ми переходимо в інтегралі до нових змінних та . Вважатимемо, що з формул (1) однозначно можна визначити та :

. (2)

Згідно з формулами (2), кожній точці ставиться у відповідність деяка точка на координатній площині з прямокутними координатами і .

Нехай множина всіх точок утворює обмежену замкнену область . Формули (1) називаються формулами перетворення координат, а формули (2) - формулами оберненого перетворення.

Справедлива така теорема.

Теорема. Якщо перетворення (2) переводить замкнену обмежену область в замкнену обмежену область і є взаємно однозначним, і якщо функції (1) мають в області неперервні частинні похідні першого порядку і відмінний від нуля визначник

, (3)

а функція неперервна в області , то справедлива така формула заміни змінних

. (4)

Функціональний визначник називається визначником Якобі або якобіаном.

Таким чином, виконуючи заміну змінних в інтегралі за формулами (1), ми маємо елемент площі в координатах замінити елементом площі в координатах і стару область інтегрування замінити відповідною їй областю .

Розглянемо заміну декартових координатполярнимиза відомими формулами. Оскільки

.

То формула (3) набирає вигляду

(4)

де область задана в декартовій системі координат , а - відповідна їй область в полярній системі координат.

У багатьох випадках формулу (4) доцільно застосовувати тоді, коли підінтегральна функція або рівняння границі області містить суму , оскільки ця сума в полярних координатах має досить простий вигляд:

.

Якщо область (рис.1, а ) обмежена променями, які утворюють з полярною віссю кути та і кривими та , то полярні координати області змінюються в межах , (рис.1, б). Тому формулу (4) можна записати у вигляді

(5)

Рисунок 1 - Область: а ) ; б)

подвійний інтеграл полярна координата

Якщо область охоплює початок координат, тобто точка є внутрішньою точкою області , то

(6)

де - полярне рівняння межі області .

Приклади

1. Обчислити інтеграл , якщо область - паралелограм,

обмежений прямими (рис.1, а ).

Розв’язання

Безпосереднє обчислення цього інтеграла надто громіздке, тому що як в напрямі осі так і в напрямі осі область потрібно спочатку розбити на три області, а потім обчислювати три подвійних інтеграли.

Виконаємо таку заміну змінних: , тоді прямі та в системі переходять в прямі та у системі (рис.1, б), а прямі та відповідно в прямі та .

Таким чином, область (паралелограм) переходить у системі в прямокутник .

Рисунок 2 - Область: а ) ; б)

Далі маємо

За формулою (3)

2. У подвійному інтегралі , де - круг, обмежений колом , перейти до полярних координат з полюсом в точці , і обчислити отриманий інтеграл.

Розв’язання

Область зображена на рис.2.

Рівняння, які пов’язують і полярні координати з полюсом у точці , мають вигляд , причому видно, що кут змінюється в межах віддо .

Рисунок 3 - Область

Підставивши вирази для і в рівняння кола, отримаємо , звідки або . Ці дві криві на площині при обмежують область , яка є прообразом області при відображенні. Якобіан відображення дорівнює . Підінтегральна функція у нових змінних дорівнює . За формулою (3) маємо

.

Одержаний подвійний інтеграл за областю зводимо до повторного:

і обчислюємо повторний інтеграл, застосовуючи формулу Ньютона - Лейбніца:

2. Застосування подвійних інтегралів до задач геометрії

1. Площа плоскої фігури. Якщо в площинізадана фігура, щомає форму обмеженої замкненої області,то площа цієї фігури знаходиться, як відомо, за формулою:

.

2. Об'єм тіла. Об'єм циліндричного тіла, твірні якого паралельні осі і яке обмежене знизу областю площини , а зверху - поверхнею , де функція неперервна та невід'ємна в області , знаходиться за формулою (2):

3. Площа поверхні. Якщо поверхня ,задана рівнянням

(7)

проектується на площину в область ( рис.3) і функції , , неперервні в цій області, то площу поверхні знаходять за формулою

(8)

Рисунок 4 - Поверхня

Виведемо цю формулу. Розіб’ємо довільним способом область на частин , які не мають спільних внутрішніх точок і площі яких дорівнюють . У кожній частині візьмемо точку ; на поверхні їй відповідатиме точка , де . Через точку проведемо дотичну площину [3]

.

На площині виділимо ту її частину, яка проектується на площину в область . Позначимо цю частину дотичної площини через , а її площу - через . Складемо суму

. (9)

Границю суми (9), коли найбільший з діаметрів областей прямує до нуля, назвемо площею поверхні ( 7), тобто за означенням покладемо

. (10)

Обчислимо цю границю. Оскільки область , яка має площу , проектується в область з площею , то , де - кут між площинами та ( рис.3), тому .

Але гострий кут дорівнює куту між віссю і нормаллю до дотичної площини, тобто куту між векторами та . Знайдемо за формулою (4)

.

Отже,

.

Підставляючи значення в (10), отримуємо

.

Під знаком границі маємо інтегральну суму, складену для неперервної в області функції . Ця функція інтегровна в області , тому границя у формулі (10) існує і дорівнює подвійному інтегралу (8).

3. Застосування подвійних інтегралів до задач механіки

1. Маса пластини. Нехай на площині маємо матеріальну пластину, яка має форму обмеженої замкненої області , в кожній точці якої густина визначається неперервною функцією . Маса такої пластини визначається за формулою (1.8):

.

2. Центр маси пластини. Статичні моменти. Нехай матеріальна пластина в площині має форму області , густина пластини в точці дорівнює , де - неперервна функція в області Розіб'ємо область на частини ,виберемо в кожній з них довільну точку і наближено вважатимемо, що маса частини дорівнює , де - площа області . Коли вважати, що кожна з цих мас зосереджена в точці , то пластину можна розглядати як систему цих матеріальних точок. Тоді координати та центра маси пластини наближено визначатимуться рівностями

.

Щоб знайти точні значення координат, перейдемо в цих формулах до границі при . Тоді інтегральні суми перейдуть у подвійні інтеграли і координати центра маси пластини визначатимуться формулами

. (11)

Величини

(12)

називаються статичними моментами пластини відносно осі та .

Враховуючи формули (8), (11) і (12), координати центра мас можна записати у вигляді

.

Якщо пластина однорідна, тобто має сталу густину , то у формулах (1.8), (11) і (12) слід покласти .

3. Моменти інерції пластини. Відомо, що момент інерції матеріальної точки відносно деякої осі дорівнює добутку маси точки на квадрат її відстані від цієї осі, а момент інерції системи матеріальних точок відносно однієї і тієї самої осі дорівнює сумі моментів інерції всіх точок системи.

Нехай матеріальна пластина має форму області у площині ,а неперервна функція визначає густину в кожній точці цієї пластини. Розіб'ємо область на частини , площі яких дорівнюють , і виберемо в кожній з цих частин довільну точку . Замінимо пластину системою матеріальних точок з масами . Якщо пластину розглядати як систему цих матеріальних точок, то моменти інерції пластини відносно осі та відносно наближено визначатимуться за формулами

.

Перейшовши до границі в кожній із сум при , отримуємо точні формули для обчислення моментів інерції розглядуваної пластини відносно координатних осей:

. (13)

Знайдемо момент інерції пластини відносно початку координат.

Враховуючи, що момент інерції матеріальної точки з масою відносно початку координат дорівнює , аналогічно отримуємо, що

. (14)

Похожие работы

  • Невласні подвійні інтеграли

    Поняття та способи розв’язку невласного подвійного інтегралу. Теорема про абсолютну збіжність невласного подвійного інтеграла. Інтеграли від необмежених функцій. Приведення подвійного інтеграла до повторного. Заміна змінних в невласних інтегралах.

  • Тривимірні перетворення

    Наочне представлення про об'єкт та його зображення в тривимірному просторі. Порядок тривимірний зміни масштабу фігури, її зсуву та обертання. Особливості відображення елементів у просторі, просторовий перенос та тривимірне обертання навколо довільної осі.

  • Потрійний інтеграл

    Характеристика та поняття потрійного інтеграла, умови його існування та основні властивості. Особливості схеми побудови та обчислення потрійного інтегралу, його застосування для розв’язання рівнянь. Правило заміни змінних в потрійному інтегралі.

  • Подвійний інтеграл

    Задачі, що приводять до поняття подвійного інтеграла. Обчислення об'єму циліндричного тіла. Маса неоднорідної матеріальної пластини. Поняття подвійного інтеграла, умови його існування та властивості. Адитивність подвійного інтеграла та його оцінка.

  • Паралельні проекції

    Елементарний математичний апарат плоских геометричних проекцій. Ортографічне косокутне проектування на площину, застосування матриць. Розгляд проекцій картинної площини в лівосторонній системі координат спостерігача, погодження з екраном дисплея.

  • Інтегральні перетворення Лапласа

    Означення та властивості перетворення Лапласа, приклади розв'язання базових задач. Встановлення відповідності між двома точками за допомогою оператора. Застосування операційного методу математичного аналізу, проведення дій над логарифмами та числами.

  • Визначення та обчислення довжини дуги плоскої кривої в декартових та полярних координатах. Площа

    Пошукова робота на тему: Визначення та обчислення довжини дуги плоскої кривої в декартових та полярних координатах. Площа поверхні. План Довжина дуги кривої в декартових і полярних координатах

  • Невласні інтеграли Поняття та різновиди невласних інтегралів

    Невласні інтеграли Поняття та різновиди невласних інтегралів Згідно з теоремою існування визначеного інтеграла цей інте­грал існує, якщо виконані умови:

  • Поверхневі інтеграли

    ПОВЕРХНЕВІ ІНТЕГРАЛИ 1. Поверхневі інтеграли першого роду Поверхневі інтеграли першого роду є узагальненням подвійних інтегралів. Нехай у точках деякої кусково-гладкої поверхні

  • Представлення і перетворення фігур

    ПРЕДСТАВЛЕННЯ І ПЕРЕТВОРЕННЯ ТОЧОК Представлення точок здійснюється наступним чином: На площині У просторі Перетворення точок. Розглянемо результати матричного множення