Название: Наближене обчислення визначених інтегралів
Вид работы: реферат
Рубрика: Математика
Размер файла: 35.43 Kb
Скачать файл: referat.me-215335.docx
Краткое описание работы: Для деяких неперервних підінтегральних функцій ї(х) не завжди можна знайти первісну, виражену через елементарні функції. У цих випадках обчислення визначеного інтеграла за формулою Ньютона — Лейбніца неможливе. В усіх цих випадках застосовують різноманітні методи наближеного інтегрування, які дають змогу використовувати сучасну обчислювальну техніку.
Наближене обчислення визначених інтегралів
Для деяких неперервних підінтегральних функцій ї(х) не завжди можна знайти первісну, виражену через елементарні функції. У цих випадках обчислення визначеного інтеграла за формулою Ньютона — Лейбніца неможливе. В усіх цих випадках застосовують різноманітні методи наближеного інтегрування, які дають змогу використовувати сучасну обчислювальну техніку. Формули, що їх зараз подамо, базуються на тлумаченні визначеного інтеграла як площі криволінійної трапеції та наближеним його представленням інтегральною сумою:
Ідея такого методу геометричне базується на тому, що графік f ( x ) заміняється близькою до цього графіка лінією. В одному випадку (при виводі формули прямокутників) графік f ( x ) заміняється ступінчастою ламаною (рис. 63). В іншому випадку (при виводі формули трапецій) графік f ( x ) заміняється ламаною, вписаною в цей графік (рис. 64). При виводі формули Сімпсона ланки згадуваної ламаної заміняються дугами парабол другого степеня. Нижче використовується позначення yk = f ( xk ) .
1. Складемо інтегральну суму, яка відповідає подрібненню [а, Ь] на п рівних частин і вибору точок ek = х k :
Звідси визначений інтеграл можна обчислювати за формулою
яку називають формулою прямокутників. Чим більше буде n, тимменшим буде крок
і права частина записаного наближення буде давати більш точне значення інтеграла.
2. Розіб'ємо проміжок [а, Ь] так, як і в попередньому випадку, і впишемо в криву АВ ламану (рис. 64). Внаслідок такої побудови дістанемо п трапецій, сума площ яких наближено дає значення інтеграла
останній вираз називають формулою трапецій.
3. Якщо відрізок інтегрування [а, Ь] поділити на парну кількість рівних частин (тобто 2n) і позначити yk = f ( xk ) , де — точки поділу, k = 0, 1, 2, ... , 2n, тоді визначений інтеграл можна обчислити за формулою
яку називають формулою Сімпсона.
Ця формула дає більш точне значення визначеного інтеграла тому, що для її доведення використовують метод парабол, за яким на кожному відрізку [xk -1 , xk ] три значення функції До:) входять до інтегральної суми.
На прикладі формули трапеції розглянемо питання про оцінку похибки від її застосування, оскільки без цього формула буде мати лише якісний характер.
Позначимо через а„ вираз, який стоїть у правій частині формули
трапеції. Тоді
— абсолютна похибка від застосування формули трапеції. Позначимо через М максимальне значення модуля другої похідної f n ( x ) над інтегральної функції у =f(х) на
У більш детальних курсах вищої математики доведено, що
Приклад 1. Обчислити інтеграл
точне значення якогодорівнює одиниці.
Згідно з формулами:
1) прямокутників при п = 3 дістанемо
2) трапецій при п = 3 одержимо
3) парабол при п = 2 маємо
Зауважимо, що всі три формули тим точніші, чим більше п, і їх абсолютна похибка при прямує до нуля відповідно до означення поняття визначеного інтеграла.
Похожие работы
-
Інтегрування і пониження порядку деяких диференціальних рівнянь з вищими похідними
Реферат на тему: Інтегрування і пониження порядку деяких ДР з вищими похідними. 1. ДР що містять n-ту похідну від шуканої функції і незалежну змінну. а) Розглянемо ДР
-
Наближене обчислення означених інтегралів формули прямокутників трапецій Сімпсона
Пошукова робота на тему: Наближене обчислення означених інтегралів: формули прямокутників, трапецій, Сімпсона. План Наближене обчислення означених інтегралів
-
Інтегральне числення
Вивчення елементарних функцій, інтеграли від яких не є елементарними функціями, тобто вони не обчислюються в скінченному вигляді або не 6еруться. Наближені методи обчислення визначених інтегралів. Дослідження невласних інтегралів та ознаки їх збіжності.
-
Обчислення матричних задач
МІНІСТЕРСТВО ОСВІТИ УКРАЇНИ Бердичівський політехнічний коледж Контрольна робота з дисципліни “Числові методи” Виконав: студент групи Пзс-503 Лифар Сергій Олександрович
-
Потрійний інтеграл
Характеристика та поняття потрійного інтеграла, умови його існування та основні властивості. Особливості схеми побудови та обчислення потрійного інтегралу, його застосування для розв’язання рівнянь. Правило заміни змінних в потрійному інтегралі.
-
Подвійний інтеграл
Задачі, що приводять до поняття подвійного інтеграла. Обчислення об'єму циліндричного тіла. Маса неоднорідної матеріальної пластини. Поняття подвійного інтеграла, умови його існування та властивості. Адитивність подвійного інтеграла та його оцінка.
-
Задачі, що приводять до поняття означеного інтеграла. Формулювання теореми існування
Пошукова робота на тему: Задачі, що приводять до поняття означеного інтеграла. Формулювання теореми існування. План Задачі, що приводять до поняття визначеного інтеграла
-
Визначення та обчислення довжини дуги плоскої кривої в декартових та полярних координатах. Площа
Пошукова робота на тему: Визначення та обчислення довжини дуги плоскої кривої в декартових та полярних координатах. Площа поверхні. План Довжина дуги кривої в декартових і полярних координатах
-
Невласні інтеграли Поняття та різновиди невласних інтегралів
Невласні інтеграли Поняття та різновиди невласних інтегралів Згідно з теоремою існування визначеного інтеграла цей інтеграл існує, якщо виконані умови:
-
Властивості визначеного інтеграла
1. Властивості визначеного інтеграла 10 Величина визначеного інтеграла не залежить від позначення змінної інтегрування: тощо. Інтегральна сума, а отже, і її границя не залежать від того, якою буквою позначено аргумент функції f. Це й означає, що визначений інтеграл не залежить від позначення змінної інтегрування.