Название: Вязкость газов в вакуумной технике
Вид работы: реферат
Рубрика: Математика
Размер файла: 45.05 Kb
Скачать файл: referat.me-215545.docx
Краткое описание работы: При перемещение твердого тела со скоростью за счет передачи количества движения молекулам газа возникает сила внутреннего трения.
Вязкость газов в вакуумной технике
При перемещение твердого тела со скоростью за счет передачи количества движения молекулам газа возникает сила внутреннего трения
В области низкого вакуума весь газ между подвижной 2 и неподвижной 1 пластинами ( рис 1 ) можно разделить на слои толщиной , где
– средняя длина свободного пути . Скорость движения каждого слоя различна и линейно зависит от расстояния между поверхностями переноса . В плоскости
происходят столкновения молекул , вылетевших из плоскостей
и
. Причиной возникновения силы вязкостного трения является , то что движущиеся как единое целое отдельные слои газа имеют разную скорость , вследствие чего происходит перенос количества движения из одного слоя в другой .
Изменение количества движения в результате оного столкновения равно . Принимая , что в среднем в отрицательном и положительном направление оси
в единицу времени единицу площади в плоскости
пересекают
молекул получим общее изменение количества движения в единицу времени для плоскости
:
( 1 ) .
Сила трения по всей поверхности переноса , согласно второму закону Ньютона , определяется общим изменение количества движения в единицу времени :
( 2 ),
где – площадь поверхности переноса ;
– коэффициент динамической вязкости газа :
( 3 )
Отношение называют коэффициентом кинематической вязкости
Более строгий вывод , в котором учтен закон распределения скоростей и длин свободного пути молекул , дает
,
что мало отличается от приближенного значения
Если в ( 3 ) подставить значения зависящих от давления переменных , то
. ( 7 )
Согласно полученному выражению , коэффициент динамической вязкости при низком вакууме не зависит от давления .
Температурную зависимость коэффициента вязкости можно определить . если подставить в ( 3 ) и
соответственно из формул :
( 6 )
и
в формулу ( 3 ) . Отсюда имеем :
( 4 )
В соответствие с ( 4 ) зависит от
, где
изменяется от ½ при высоких температурах
до
при низких температурах при
. Во всех случаях коэффициент динамической вязкости увеличивается при повышение температуры газа .
Значения коэффициентов динамической вязкости для некоторых газов при даны в таблице .
ТАБЛИЦА 1
Коэффициенты динамической вязкости | ||||||||||
Газ | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
воздух |
![]() |
0.88 | 1.90 | 1.10 | 2.10 | 3.00 | 1.75 | 1.70 | 2.02 | 1.40 | 1.70 |
Для двухкомпонентной смеси коэффициент динамической вязкости рассчитывается по формуле :
,
где ;
;
;
;
и
находят из формулы
. Величина
в этом случае зависит от состава газовой смеси .
В области высокого вакуума молекулы газа перемещаются между движущейся поверхностью и неподвижной стенкой без соударения . В этом случае силу трения можно рассчитать по уравнению :
( 5 )
Знак « – » в формуле ( 5 ) означает , что направление силы трения противоположно направлению переносной скорости .
Сила трения в области высокого вакуума пропорциональна молекулярной концентрации или давлению газа . Уравнение ( 5 ) с учетом ( 6 ) можно преобразовать к следующему виду :
, ( 9 )
откуда видно , что сила трения возрастает пропорционально корню квадратному из абсолютной температуры .
В области среднего вакуума можно записать аппроксимирующее выражение . рассчитывая градиент переносной скорости в промежутке между поверхностями переноса по следующей формуле :
,
где – расстояние между поверхностями переноса . Тогда с учетом ( 7 ) сила трения в области среднего вакуума :
( 8 ).
Легко заметить , что в условиях низкого вакуума при формула ( 8 ) с ( 2 ) , а в условиях высокого вакуума при
с (9) .
Зависимость от давления силы трения тонкой пластины площадью , движущейся в воздухе при
со скоростью
, при расстояние между поверхностями переноса
показана на рис 2 .
Вязкость газов используется для измерения давлений в области среднего и высокого вакуума , однако вязкостные манометры не получили пока широкого применения из-за длительности регистрации давления . Гораздо шире явление вязкости используется в технологии получения вакуума . На этом принципе работают струйные эжекторные насосы , выпускаемые промышленностью для работы в области низкого вакуума .
При ,
,
,
,
.
Список литературы
Л.Н. Розанов . Вакуумная техника .
Москва « Высшая школа » 1990 .
Похожие работы
-
Найти пределы функций, не пользуясь правилом Лопиталя
Задача №1 Зависимости координат от времени при движении материальной точки в плоскости имеют вид: Определить модуль скорость ( ) и ускорение ( ) этой точки в момент времени
-
Применение спектрального анализа
Методом, дающим ценные и наиболее разнообразные сведения о небесных светилах, является спектральный анализ. Он позволяет установить из анализа света качественный и количественный химический состав светила, его температуру.
-
Гармонические колебания
Колебаниями называются движения или процессы, которые характеризуются определённой повторяемостью во времени.
-
Полосная теория твердотельной проводимости
Электрические свойства твердого тела зависят от того, как электроны составляющих его атомов распределяются по орбитальным уровням при его кристаллизации.
-
Экзаменационные билеты по теоретической механике
Билеты по разделу "Динамика".
-
Опыты Эйхенвальда и Вильсона
Экспериментальные основания теории относительности.
-
Закон Грэма
Чем меньше плотность идеального газа, тем больше скорость его истечения через микроскопические отверстия в стенках сосуда.
-
Закон сохранения момента импульса
В замкнутой системе выполняется закон сохранения момента импульса.
-
Сила трения и движение тела
Некрашевич Е.А., Тарасова В.И., ЛИТ, Хабаровск Предлагаем вниманию читателей еще одну статью учителей Хабаровского Лицея информационных технологий. В ней речь пойдет об опыте работы по формированию у учащихся умения решать физические задачи.
-
Гидродинамика вязкой жидкости
Гидродинамика представляет собой раздел механики сплошных сред, в котором изучается движение несжимаемых жидкостей и взаимодействие несжимаемых жидкостей с твердыми телами, — использует единый подход к изучению жидкостей и газов.