Название: Гармонические колебания
Вид работы: реферат
Рубрика: Математика
Размер файла: 13.59 Kb
Скачать файл: referat.me-217289.docx
Краткое описание работы: Колебаниями называются движения или процессы, которые характеризуются определённой повторяемостью во времени.
Гармонические колебания
Колебаниями называются движения или процессы, которые характеризуются определённой повторяемостью во времени. Колебания бывают:
Вынужденные
Гармонические
Затухающие
Периодические
Внешняя сила, обеспечивающая незатухающие колебания системы, называется вынужденной, а колебания системы – вынужденными.
Гармоническим называют колебание, при котором изменение колеблющейся величины со временем происходит по закону синуса (или косинуса, если точка М (материальная точка) проецируется на горизонтальный диаметр).
Колебательное движение реальной механической системы всегда сопровождается трением, на преодоление которого расходуется часть энергии колебательной системы. Поэтому энергия колебания в процессе колебания уменьшается, переходя в теплоту. Т.к. энергия колебания пропорциональна квадрату амплитуды, то постепенно уменьшается и амплитуда колебаний (см. Рисунок: х - смещение, t – время). Когда вся энергия колебания перейдёт в теплоту, колебание прекратится. Такого рода колебания называются затухающими.
Периодическим называется колебание, при котором, система отклоняется от своего состояния равновесия, и каждый раз возвращается к нему через одинаковые промежутки времени.
Колебательные процессы широко распространены в природе и технике: вибрация натянутой струны, движение поршня дизеля и ножей косилки, суточные и годичные изменения температуры воздуха, морские приливы и отливы, волнение водной поверхности, биение сердца, дыхание, тепловое движение ионов кристаллической решётки твёрдого тела, переменный ток и его электромагнитное поле, движение электронов в атоме, и, конечно, движение часового маятника. Рассмотрим колебания математического маятника:
Математическим маятником называется материальная точка, колеблющаяся на невесомой и недеформируемой нити.
Момент инерции математического маятника равен:
J = ml2 ,
Где m – масса материальной точки, l – длина нити.
Подставляя это выражение в выражение периода колебание маятника (T = 2 / = 2 J/(mgl)), получим окончательную формулу периода колебаний математического маятника:
T = 2 l/g.
Отсюда следует, что при малых отклонениях период колебания математического маятника пропорционален квадратному корню из длины маятника, обратно пропорционален квадратному корню из ускорения свободного падения и не зависит от амплитуды колебаний и массы маятника.
Колебательные явления могут возникать помимо нашего желания и играть вредную роль: часто наблюдаются нежелательные и опасные колебания сооружений, вибрации механизмов и т.д.
Список литературы
Р.И. ГРАБОВСКИЙ (Курс Физики)
О.Ю. ШМИДТ, Ф.Н. ПЕТРОВ (Большая Советская Энциклопедия)
Похожие работы
-
Механические колебания и волны
Колебания – это движение тела, в ходе которого оно многократно движется по одной и той же траектории и проходит при этом одни и те же точки пространства. Примерами колеблющихся объектов могут служить - маятник часов, струна скрипки или фортепиано.
-
Уравнение Лапласа и гармонические функции
УРАВНЕНИЕ ЛАПЛАСА И ГАРМОНИЧЕСКИЕ ФУНКЦИИ Основные понятия Мы начнем с самого простого и важного из эллиптических уравнений, а именно с уравнения Лапласа.
-
Колебательно движение материальной точки
Министерство образования и науки Российской Федерации Санкт-Петербургский государственный горный институт имени В.Г. Плеханова (технический университет)
-
Замечательное уравнение кинематики
В предлагаемой статье рассмотрена возможность расширения сферы применения кинематических уравнений для решения задач механики. Показана возможность переноса метода составления простейших уравнений движения.
-
Экзаменационные билеты по теоретической механике
Билеты по разделу "Динамика".
-
Механические колебания в дифференциальных уравнениях
Министерство образования Российской Федерации Магнитогорский государственный технический университет им. Г.И. Носова РЕФЕРАТ на тему: “МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ В ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЯХ”
-
Мир колебаний
Описание классических примеров.
-
Мир глазами Нильса Бора: волны и их восприятие
Волны и частицы в классическом естествознании. Математический формализм описания волн и частиц.
-
Вопросы к государственному экзамену по физике
Физический факультет БГПУ (2004 год).
-
Механические колебания в дифференциальных уравнениях
Гармонические колебания. Затухающие колебания. Вынужденные колебания без учета сопротивления среды. Вынужденные колебания с учетом сопротивления среды.