Название: Теория вероятности
Вид работы: курсовая работа
Рубрика: Математика
Размер файла: 58.8 Kb
Скачать файл: referat.me-215727.docx
Краткое описание работы: Формулировка теоремы Бернулли, проверка ее с помощью программы. Моделирование случайной величины методом кусочной аппроксимации. График распределения Коши, построение гистограммы и нахождения числовых характеристик, составление статистического ряда.
Теория вероятности
Московский Государственный Авиационный Институт
( технический университет )
Филиал “ Взлёт”
Курсовая работа
по дисциплине "Теория вероятности и математическая статистика"
“Теория вероятности”
Выполнил студент группы ДР-2:
Архипов А.В.
Проверил преподаватель:
Егорова Т. П.
г. Ахтубинск 2004 г
Задание 1
Проверка выполнимости теоремы Бернулли на примере надёжности электрической схемы.
Формулировка теоремы Бернулли: “Частота появления события в серии опытов сходится по вероятности к вероятности данного события”.
p1 = 0.9
p2 = 0.8
p3 = 0.9
p4 = 0.8
p5 = 0.9
p6 = 0.9
Проверка теоремы с помощью программы:
Текстпрограммы:
Program bernuli;
Uses CRT;
Var op,i,j,m,n:integer;
a,pp:real;
p:array[1..6] of real;
x:array[1..6] of byte;
Begin
ClrScr;
Randomize;
p[1]:=0.9; p[2]:=0.8; p[3]:=0.9; p[4]:=0.8; p[5]:=0.9; p[6]:=0.9;
for op:=1 to 20 do begin
n:=op*100; m:=0;
write(' n=',n:4);
for i:=1 to n do begin
for j:=1 to 6 do begin
x[j]:=0;
a:=random;
if a<p[j] then x[j]:=1;
end;
if ((((((x[1]=1) and (x[2]=1)) or (x[3]=1)) and (x[4]=1)) or (x[5]=1)) and (x[6]=1)) then m:=m+1
end;
pp:=m/n;
writeln(' M=',m:4,' P*=',pp:3:6);
End;
Readln;
end.
Результаты работы программы:
Опытов: Мсходы: Вер-ть:
n= 100 M= 89 P*=0.89
n= 200 M= 173 P*=0.86
n= 300 M= 263 P*=0.88
n= 400 M= 360 P*=0.90
n= 500 M= 434 P*=0.87
n= 600 M= 530 P*=0.88
n= 700 M= 612 P*=0.87
n= 800 M= 704 P*=0.88
n= 900 M= 784 P*=0.87
n=1000 M= 865 P*=0.86
n=1100 M= 985 P*=0.90
n=1200 M=1062 P*=0.89
n=1300 M=1165 P*=0.90
n=1400 M=1238 P*=0.88
n=1500 M=1330 P*=0.89
n=1600 M=1418 P*=0.89
n=1700 M=1471 P*=0.87
n=1800 M=1581 P*=0.88
n=1900 M=1670 P*=0.88
n=2000 M=1768 P*=0.88
Вер. в опыте: p= 0.88
Проверка вручную:
Первый способ:
Второй способ:
Вывод: Теорема Бернулли верна.
Задание 2
Методом кусочной аппроксимации смоделировать случайную величину, имеющую закон распределения Коши, заполнить массив из 300 точек.
Теория:
Метод кусочной аппроксимации заключается в том, что для формирования одного случайного числа из последовательности с заданным законом распределения необходимо дважды использовать датчик случайных чисел. Процедура получения случайного числа yi сводиться к:
1. Случайный выбор интервала (определение значения aj )
2. Случайный выбор «b» из этого интервала
3. Формирование случайного числа в соответствии с формулой
При выборе интервала на первом шаге процедуры должна учитываться плотность распределения. С этой целью ее кусочно-линейно аппроксимируют отрезками прямых, параллельных оси абсцисс (рис.1.)
Рис.1. Кусочно-линейно аппроксимированный график плотности распределения по закону Коши.
Количество интервалов разбиения области определения случайной величины обычно выбирается достаточно большим (именно поэтому в данной Курсовой работе было использовано разбиение на 400 интервалов).
Решение:
Построим график плотности распределения по закону Коши ():
Рис.2. График распределения Коши.
Необходимо разбить интервал от –20 до 20 на n подинтервалов (в данном случае n=40) и вычислить вероятность попадания на каждый из этих подинтервалов. После этого составить массив [a1
,aj
], так чтобы a1
=0, a , случайно сгенерировать значение числа «b» из промежутка от 0 до 1, найти номер интервала в который она попадет и второй раз используя датчик случайных чисел сгенерировать случайную добавку «b». Для выполнения этих действий составим программу в среде TurboPascal 7.1.
Программа позволяющая смоделировать СВ, имеющую закон распределения Коши:
Program tvmslab2;
Uses CRT,GRAPH;
Type mas=array[1..40] of real;
label 10;
const a:mas=(0.0008,0.0009,0.001,0.0011,0.0013,0.0015,0.0017,0.002,0.0024,
0.00287,0.0035,0.0043,0.0056,0.0074,0.01,0.015,0.024,0.045,0.102,0.25,0.25,
0.102, 0.045,0.024,0.015,0.01,0.0074,0.0056,0.0043,0.0035,0.00287,0.0024,0.002
0.0017,0.0015,0.0013,0.0011,0.001,0.0009,0.0008);
Xmax=20; Xmin=-20;
n=300; k=40; xn=70; xm=550; yn=180; ym=140;
Var i,j:integer;
q:boolean;
a1,y,x,e,dh,t,Mmax,hmax,t1,t2,b,Mxx,Dxx,Skx,Qxx,Exx:real;
r,d,x1,x2,y1,y2:integer;
m,xi,pix,hi,h:array[1..300] of real;
o,l:array[1..41] of real;
b1:array[0..300] of real;
st:string;
Begin
clrscr;
randomize;
o[1]:=0;
for i:=1 to 41 do begin
o[i+1]:=o[i]+a[i];
end;
x:=-20;
for i:=1 to 41 do begin
l[i]:=x;
x:=x+1;
end;
writeln(' Массив имеющий закон распределения Коши:')
writeln;
for j:=1 to 300 do begin
a1:=random;
for i:=1 to 41 do begin
if (a1>o[i]) and (a1<o[i+1]) then goto 10;
end;
10: b1[j]:=random+l[i];
write(' ',b1[j]:1:2);
if j mod 10= 0 then writeln;
if j mod 210= 0 then readln;
end;
readln;
end.
Результат работы программы:
Массив имеющий закон распределения Коши:
3.83 -9.36 0.79 0.22 -0.32 0.46 -0.73 20.98 -0.44 -1.74 0.02 0.70 -1.98 0.77 -9.79 3.24 0.36 -1.04 -4.28 2.71 -1.82 -0.92 -3.36 -0.65 0.37 -0.15 0.36 -0.61 0.76 20.56 -1.81 -8.94 0.26 0.40 1.62 0.59 -0.41 1.69 -0.02 0.29 0.61 0.32 0.86 -1.24 -1.87 -0.84 2.95 0.04 -0.63 1.54 0.53 -1.07 -0.08 -2.15 3.43 -0.66 -2.70 -0.87 0.64 0.65 0.04 3.76 -2.54 -3.80 2.40 1.22 -0.84 8.86 0.54 3.91 -0.70 -5.46 -1.64 -0.01 -0.52 -1.08 -2.16 -0.66 0.83 -1.88 1.97 0.55 3.84 -0.51 0.22 20.98 -3.00 0.46 -0.40 -2.10 0.78 20.46 -4.76 -0.36 1.30 3.85 -0.41 19.88 0.55 -1.05 0.14 -15.07 -0.87 0.18 -3.28 1.10 -0.42 -3.83 1.35 -3.82 -0.72 -1.02 -0.35 -0.13 -0.10 0.40 0.85 0.40 -0.62 1.28 -2.68 -1.88 -2.43 0.94 1.67 20.21 -0.70 -0.39 -3.56 -0.60 -3.86 -0.99 -6.71 0.79 1.62 -1.11 2.87 0.74 1.08 -0.29 -0.90 -0.22 0.04 -6.63 0.13 -0.36 -10.82 -3.04 2.81 -0.73 -0.16 0.61 -0.25 4.00 -0.93 -7.58 -0.09 0.69 0.30 2.38 0.79 11.03 -0.44 -0.56 11.12 -1.22 1.17 0.60 -1.78 -2.78 -0.85 -0.98 -1.21 3.51 0.05 0.29 -8.62 0.26 -0.56 1.68 -1.65 13.02 -0.11 0.50 -0.58 4.98 0.57 -0.51 0.78 -0.43 -1.62 0.27 0.75 0.29 20.65 0.91 0.01 3.46 -0.58 -0.50 9.42 -0.88 -1.78 0.81 1.35 -0.03 3.53 11.99 0.63 -1.65 20.66 0.36 -0.01 -0.68 0.31 0.28 16.13 -1.24 -0.36 0.99 -1.65 0.58 1.88 -0.35 0.66 0.94 1.56 0.31 0.58 0.61 -0.73 1.04 -0.61 -1.73 -1.02 -7.95 21.00 -0.98 20.94 -0.03 0.36 0.82 -2.91 1.03 0.47 -0.91 6.13 1.49 0.91 6.30 -0.93 1.03 -1.07 1.70 -0.63 -8.84 -1.87 0.01 2.63 -1.20 1.73 -1.71 -12.13 0.89 3.30 -0.24 0.36 18.97 9.16 0.77 -0.02 -0.03 -2.71 -1.20 -0.79 0.95 -0.18 0.50 5.61 -0.04 0.05 0.81 0.93 20.94 -0.91 20.17 1.70 1.66 -0.99 -0.25 -0.51 0.79 20.58 1.78 2.62 0.99 -1.45 0.89 -0.48 -0.98
Вывод : Используя данный метод можно формировать случайные величины со сколь угодно сложным законом распределения. Недостаток – необходимость некоторой подготовительной работы перед непосредственным применением процедуры и двукратное применение датчика случайных чисел для розыгрыша одного значения случайного числа Y.
Задание 3
Критерием Пирсона проверить, что данный массив имеет соответствующий закон распределения.
Для построения гистограммы и нахождения числовых характеристик, необходимо составить статистический ряд:
Статистический ряд
m[1]=0.00 x[1]=-19.5 pi[1]=0.0000 hi[1]=0.0000
m[2]=0.00 x[2]=-18.5 pi[2]=0.0000 hi[2]=0.0000
m[3]=0.00 x[3]=-17.5 pi[3]=0.0000 hi[3]=0.0000
m[4]=0.00 x[4]=-16.5 pi[4]=0.0000 hi[4]=0.0000
m[5]=1.00 x[5]=-15.5 pi[5]=0.0033 hi[5]=0.0033
m[6]=0.00 x[6]=-14.5 pi[6]=0.0000 hi[6]=0.0000
m[7]=0.00 x[7]=-13.5 pi[7]=0.0000 hi[7]=0.0000
m[8]=1.00 x[8]=-12.5 pi[8]=0.0033 hi[8]=0.0033
m[9]=0.00 x[9]=-11.5 pi[9]=0.0000 hi[9]=0.0000
m[10]=1.00 x[10]=-10.5 pi[10]=0.0033 hi[10]=0.0033
m[11]=2.00 x[11]=-9.5 pi[11]=0.0067 hi[11]=0.0067
m[12]=3.00 x[12]=-8.5 pi[12]=0.0100 hi[12]=0.0100
m[13]=2.00 x[13]=-7.5 pi[13]=0.0067 hi[13]=0.0067
m[14]=2.00 x[14]=-6.5 pi[14]=0.0067 hi[14]=0.0067
m[15]=1.00 x[15]=-5.5 pi[15]=0.0033 hi[15]=0.0033
m[16]=2.00 x[16]=-4.5 pi[16]=0.0067 hi[16]=0.0067
m[17]=8.00 x[17]=-3.5 pi[17]=0.0267 hi[17]=0.0267
m[18]=11.00 x[18]=-2.5 pi[18]=0.0367 hi[18]=0.0367
m[19]=32.00 x[19]=-1.5 pi[19]=0.1067 hi[19]=0.1067
m[20]=79.00 x[20]=-0.5 pi[20]=0.2633 hi[20]=0.2633
m[21]=83.00 x[21]=0.5 pi[21]=0.2767 hi[21]=0.2767
m[22]=26.00 x[22]=1.5 pi[22]=0.0867 hi[22]=0.0867
m[23]=8.00 x[23]=2.5 pi[23]=0.0267 hi[23]=0.0267
m[24]=12.00 x[24]=3.5 pi[24]=0.0400 hi[24]=0.0400
m[25]=1.00 x[25]=4.5 pi[25]=0.0033 hi[25]=0.0033
m[26]=1.00 x[26]=5.5 pi[26]=0.0033 hi[26]=0.0033
m[27]=2.00 x[27]=6.5 pi[27]=0.0067 hi[27]=0.0067
m[28]=0.00 x[28]=7.5 pi[28]=0.0000 hi[28]=0.0000
m[29]=1.00 x[29]=8.5 pi[29]=0.0033 hi[29]=0.0033
m[30]=2.00 x[30]=9.5 pi[30]=0.0067 hi[30]=0.0067
m[31]=0.00 x[31]=10.5 pi[31]=0.0000 hi[31]=0.0000
m[32]=3.00 x[32]=11.5 pi[32]=0.0100 hi[32]=0.0100
m[33]=0.00 x[33]=12.5 pi[33]=0.0000 hi[33]=0.0000
m[34]=1.00 x[34]=13.5 pi[34]=0.0033 hi[34]=0.0033
m[35]=0.00 x[35]=14.5 pi[35]=0.0000 hi[35]=0.0000
m[36]=0.00 x[36]=15.5 pi[36]=0.0000 hi[36]=0.0000
m[37]=1.00 x[37]=16.5 pi[37]=0.0033 hi[37]=0.0033
m[38]=0.00 x[38]=17.5 pi[38]=0.0000 hi[38]=0.0000
m[39]=1.00 x[39]=18.5 pi[39]=0.0033 hi[39]=0.0033
m[40]=1.00 x[40]=19.5 pi[40]=0.0033 hi[40]=0.0033
Построим гистограмму:
Рис.3. Гистограмма распределения по закону Коши.
По данным статистического ряда вычислим числовые характеристики:
Числовые характеристики:
- статистическое математическое ожидание
- статистическая дисперсия
- статистическое среднеквадратическое отклонение
- скошенность
- эксцесс
Для нахождения необходимо вычислить Pi
(вероятности попадания на каждый из интервалов). Вероятность попадания может быть найдена как площадь криволинейной трапеции, ограниченной концами этого интервала слева и справа, и графиком плотности распределения сверху:
По найденной частоте и вероятности, вычислим значение :
Т.к. число степеней свободы r = 7, а уровень значимости p = 0.1, следовательно значение будет равным 12.02.
Вывод:
Таким образом, сравнив значения и
получим, что
, а, следовательно, нет оснований отвергнуть гипотезу о распределении случайной величины по закону Коши.
Литература
1. Е. С. Венцель “Теория вероятности”
2. Г.М. Погодина “Лабораторные работы по курсу Теория вероятностей и статистических решений”
3. Курс лекций по Теории вероятности
Похожие работы
-
Проверка статистической гипотезы о нормальном законе распределения случайной величины
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОУ ВПО ТОмский ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОЛОГО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА КАРТОГРАФИИ И ГИС Лабораторная работа №3
-
Основы теории вероятности
Контрольная работа Основы теории вероятности Задание 1 Проверка выполнимости теоремы Бернулли на примере надёжности электрической схемы. Формулировка теоремы Бернулли: “Частота появления события в серии опытов сходится по вероятности к вероятности данного события.”
-
Моделирование дискретной случайной величины по геометрическому закону распределения
Распределение дискретной случайной величины по геометрическому закону распределения, проверка теоремы Бернулли на примере моделирования электрической схемы. Математическое моделирование в среде Turbo Pascal. Теоретический расчёт вероятности работы цепи.
-
Первичная статистическая обработка информации
400 45 431 394 362 436 343 403 483 462 395 467 420 411 391 397 455 412 363 449 439 411 468 435 313 486 463 417 369 377 409 390 389 386 409 379 412 370 391 421 459 390 415 415 366 323 469 399 486 393 361 407
-
Определение законов распределения случайных величин и их числовых характеристик на основе опытны
Самарский государственный аэрокосмический университет им. академика С.П. Королева Кафедра прикладной математики Расчетно-графическая работ по курсу «Теория вероятностей и математическая статистика»
-
Проверка гипотезы о законе распределения генеральной совокупности X по критерию Пирсона
Федеральное агентство по образованию РФ Сибирская государственная автомобильно-дорожная академия (СибАДИ) Кафедра: «Высшая математика» РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА
-
Методика обработки экспериментальных данных 2
Задание на курсовую работу Построить вариационный ряд Рассчитать числовые характеристики статистического ряда: а) Размах варьирования. б) Среднее арифметическое значение.
-
Расчет показателей надежности и законов их распределения
Расчет параметров экспериментального распределения. Вычисление среднего арифметического значения и среднего квадратического отклонения. Определение вида закона распределения случайной величины. Оценка различий эмпирического и теоретического распределений.
-
Теория вероятности и математическая статистика
Особенности выполнения теоремы Бернулли на примере электрической схемы. Моделирование случайной величины по закону распределения Пуассона, заполнение массива. Теория вероятности, понятие ожидания, дисперсии случайной величины и закон распределения.
-
Теория вероятности и математическая статистика
Теорема Бернулли на примере моделирования электросхемы. Моделирование случайной величины, имеющей закон распределения модуля случайной величины, распределенной по нормальному закону. Проверка критерием Х2: имеет ли данный массив закон распределения.