Referat.me

Название: Побудова зображень предметів на площині

Вид работы: реферат

Рубрика: Математика

Размер файла: 1.6 Mb

Скачать файл: referat.me-215758.docx

Краткое описание работы: Сутність методу проекціювання. Центральні та паралельні проекції. Переваги ортогонального проекціювання перед центральним та косокутним. Положення геометричної фігури в просторі і виявлення її форми по ортогональних проекціях. Закони побудови зображень.

Побудова зображень предметів на площині

Житомирський Військовий Інститут

Національного Авіаційного Уніврситету

Реферат

на тему:

Побудова зображень предметів на площині

Житомир 2010


Нарисна геометрія – наука, яка вивчає просторові форми та способи зображення їх на площині.

Основною задачею нарисної геометрії є вивчення методів побудови зображень просторових форм та в розробці способів рішення просторових задач за допомогою зображень.

Предмет, якій зображують називають оригіналом або моделлю. Креслення повинно містити геометричну інформацію про форму та розміри оригіналу. До такого креслення висуваються слідуючи основні вимоги:

– наочність, тобто давати просторове уявлення про модель;

– простота з точки зору графічного виконання;

– точність – графічні операції, які виконуються на кресленні, повинні давати точні рішення.

Для побудови зображень предметів на площині користуються методом проекціювання. Тому наступне питання - метод проекцій.


1. Сутність методу проекціювання

Отже, проекція - це зображення предмета, "відкинуте" на площину за допомогою променів. Спроекціювати предмет — це означає зобразити його на площині (рис.1).

Залежно від положення проекціюючих променівпроекції поділяють на центральні та паралельні.

Рис. 1

Ідею центрального проекціювання видно з рис.2. Точка S, з якої виходять проекціюючі промені, називається центром проекціювання. Площина π1 на яку проекціюється предмет, називається площиною проекцій. Площина π1 і точка S становлять апарат центральної проекції. Щоб спроекціювати трикутник, треба з центра проекцій Sчерез усі його вершини провести проекціюючі промені до перетину з площиною проекцій π1. Одержимо точки А1 В1 С1 , які називаються центральними проекціями вершин А, В, С на площину π1 , а трикутник А1 В1 С1 - центральною проекцією трикутника ABC.


Метод паралельного проекціювання розглянемо за допомогою рис. 3. Як і в попередньому випадку, вибирають площину проекцій π1 . Замість центра проекцій Sзадають напрям проекціювання s, тобто вважають, що центр проекцій Sвіддалений у нескінченність. Тому проекціюючі промені паралельні між собою. Площина π1 і напрям sстановлять апарат паралельної проекції. Щоб спроекціювати трикутник ABCна площину π1 , через вершини А, В, С проводять проекціюючі промені паралельно напряму проекціювання s. Внаслідок перетину цих променів з площиною π1 утворюється трикутник А1 В1 С1 , який являє собою паралельну проекцію трикутника ABC.


Рис. 5

Паралельні проекції поділяють на прямокутні і косокутні. Якщо проекціюючі промені перпендикулярні до площини проекцій (рис. 4), то таке проекціювання називають прямокутним, а проекції, які при цьому одержують — прямокутними, або ортогональними. Якщо ж кут нахилу променів не дорівнює 90°, то такі паралельні проекції називаються косокутними. У кресленні користуються прямокутними проекціями.

Ортогональне проекціювання має ряд переваг перед центральним та косокутним паралельним проекціюванням:

– простоту геометричних побудов ортогональних проекцій предметів;

– зберігання на проекціях, при певних умовах, форми та величини лінійних та кутових розмірів проекціюючих предметів.

2. Побудова за заданими координатами епюрів прямих, взаємного положення прямих та прямих і точок.

Розглянемо просторову модель координатної площини проекцій. Для визначення положення геометричної фігури в просторі і виявлення її форми по ортогональних проекціях найбільш зручною є декартова система координат. Декартова система координат складається з трьох взаємно перпендикулярних площин.

π1 – горизонтальна площина проекцій;

π2 – фронтальна площина проекцій;

π3 – профільна площина проекцій.

Лінії перетину площин проекцій утворюють осі координат: X - вісь абсцис, Y - вісь ординат, Z - вісь аплікат, а точка перетину координатних осей O береться за початок координат.


π1 – горизонтальна площина проекцій; π2 – фронтальна площина проекцій;

Площини проекцій перетинаються по вісі координат Ох . Обертанням навколо вісі Ох площину π1 суміщають з площиною π2 . Отримаємо комплексне креслення

Схему побудови зворотного ортогонального креслення розвинув Гаспар Монж – знаменитий французький учений. По схемі Монжа оригінал (наприклад точка) проекціюється ортогонально на дві взаємно перпендикулярні площини проекції π1 - горизонтальну і π2 - фронтальну площини проекцій.

Лінія зв'язку - це пряма, що з’єднує дві проекції точки на комплексному кресленні і перпендикулярна осі проекцій.

У результаті ми отримали двохпроекційне комплексне креслення точки А.

Твердження: Дві прямокутні проекції точки повністю визначають її положення в просторі основних площин проекцій.

Тобто комплексне креслення або епюр Монжа (з фр. «креслення») – це зображення, яке отримуємо в результаті обертання площини проекцій π1 на кут 90° до суміщення π2 .

В кресленні ж при побудові зображень часто користуються трьома проекціями на три площини проекцій. Розглянемо, за якими законами це реалізується.

Просторова картина

Комплексне креслення


А 1 – горизонтальна та А 2 – фронтальна проекції точки А . Проекціюючі промені А А 1 та А А 2 перпендикулярні відповідним площинам проекцій. Точки перетину проекціюючої площини з віссю Ох позначена АХ . На комплексному кресленні горизонтальна А 1 та фронтальна А 2 проекції точки А з’єднуються вертикальною лінією проекційного зв’язку, яка ^ вісі Ох .


Для переходу до комплексного креслення просторову модель розрізають по вісі Оу та суміщають всі три площини проекцій в одну: π1 обертають навколо вісі Ох , π3 обертають навколо вісі О z до їх спів падання з π2 .Вісь Оу розпадається на дві вісі у 1 та у 3



Проекціюючі промені АА 1 , АА 2 та АА 3 проводять перпендикулярно відповідним площинам проекцій й отримують проекції точки А : горизонтальну А 1 , фронтальну А 2 та профільну А 3 . Точки перетину проекціюючих площин з відповідними осями позначені АХ , А Y , А Z .

На комплексному кресленні лінії проекційного Проекціюючі промені АА 1 , АА 2 та АА 3 проводять перпендикулярно відповідним площинам проекцій й отримують проекції точки А : горизонтальну А 1 , фронтальну А 2 та профільну А 3 . Точки перетину проекціюючих площин з відповідними осями позначені АХ , А Y , А Z .

На комплексному кресленні лінії проекційного зв’язку ^ осям координат. Лінія А1 А 2 ^Ох розташована вертикально, а А 2 А 3 ^О z – горизонтально. При побудові лінії проекційного зв’язку від А1 до А 3 необхідно зберігати рівність координатних відрізків по осі Оу : АХ А1 = А Z А 3

Для переходу до просторову модель розрізають по вісі Оу та суміщають всі три площини проекцій в одну: π1 обертають навколо вісіπ3 обертають навколо вісі О z до їх спів падання з π2 .Вісь Оу розпадається на дві вісі у 1 та у 3

Перпендикуляр АА1 називається горизонтально-проекціюючим, АА2 - фронтально-проекціюючим і АА3 - профільно-проекціюючим променем.


На комплексному кресленні чисельні значення координат відкладаються вздовж відповідних координатних осей. Кожна проекція точки визначається двома координатами: горизонтальна – ХА та Y А , фронтальна – ХА та Z А , профільна – Y А та Z А .


Горизонтально конкуруючі точки А та В лежать на одному горизонтально – проекціюючому промені, тому їх горизонтальні проекції співпадають. Точка В віща за точку А та розташована ближче до спостерігача, тому горизонтальна проекція В1 буде видимою.


Фронтально конкуруючі точки А та В відрізняються координатою у , лежать на одному фронтально – проекціюючому промені, тому їх фронтальні проекції співпадають. Ближче до спостерігача розташована точка В , тому її фронтальна проекція В2 буде видимою.

До сих пір ми розглядали проекції точки, а зараз розглянемо комплексне креслення лінії. Пряма в просторі безмежна. Обмежена частина прямої називається відрізком.

По розташуванню відносно площин проекцій прямі можуть бути загального та частинного положень.

Прямою загального положення є пряма, яка не паралельна жодній з площин проекцій.


Розглянемо схему побудови ортогонального креслення прямої лінії. Проекціювання прямої зводиться до побудови проекцій будь-яких двох її точок, так як дві точки повністю визначають положення прямої в просторі.

Наприклад візьмемо пряму mзагального положення (рис. 12), яка задана двома точками А і В.Побудуємо ортогональні проекції відрізку АВ на площинах π12 , π3 . З’єднаємо проекції точок А і В на кожній площині отримаємо проекцію відрізку АВ на всі три проекціюючі площини.

Комплексне креслення відрізку прямої АВ загального положення на всі три площини проекції наведено на рис. 13.



Положення прямої m в просторі визначають дві довільні точки А та В , які лежать на цій прямій. Пряма лінія m є заданою, якщо на комплексному кресленні побудувати проекції двох її точок А та В . Проекції прямої m проходять через пари відповідних проекцій точок: горизонтальна проекція прямої m 1 – через А1 та В1 ; фронтальна проекція прямої m 2 – через А2 та В2

Якщо відрізок АВ загального положення (рис. 14) продовжити в обидва боки від точок А і В, то в точках М і N він перетне площини проекцій π1 і π2 .

Рис. 14
Пряма, яка паралельна якій-небудь площині проекцій, не може мати сліду на тій площині, якій вона паралельна, так як вона з нею не перетинається.

Пряма частинного положення (або пряма рівня) – називається пряма, паралельна хоч би одній з площин проекцій.

Проекціюючими називаються прямі, перпендикулярні до однієї з площин проекцій, тобто паралельні двом іншим площинам.


Рис. 16


Слід прямої – це точка перетину прямої з відповідною площиною проекцій.Точка М — горизонтальний слід прямої АВ ,вона має аплікатуz М = 0, а точка N - фронтальний слід прямої АВ ,вона має аплікатуyN = 0.

Для побудови горизонтального сліду прямої АВ знайдемо на ній точку М з координатою z = 0, перетин фронтальної проекції прямої А 2 В 2 з віссю х визначає фронтальну проекцію сліду М 2 . Горизонтальна проекція сліду М1 належить горизонтальній проекції прямої.

Для побудови фронтального сліду прямої АВ знайдемо на ній точку N з координатою у = 0, перетин горизонтальної проекції прямої А 1 В 1 з віссю х визначає горизонтальну проекцію сліду N 1 . Фронтальна проекція сліду N 2 належить фронтальній проекції прямої.

Похожие работы

  • Методи перетворення комплексного креслення

    Поняття і сутність нарисної геометрії. Геометричні фігури як формоутворюючі елементи простору. Розв'язання метричних задач шляхом заміни площин проекцій. Плоскопаралельне переміщення та обертання навколо ліній рівня. Косокутне допоміжне проектування.

  • Тривимірні перетворення

    Наочне представлення про об'єкт та його зображення в тривимірному просторі. Порядок тривимірний зміни масштабу фігури, її зсуву та обертання. Особливості відображення елементів у просторі, просторовий перенос та тривимірне обертання навколо довільної осі.

  • Паралельні проекції

    Елементарний математичний апарат плоских геометричних проекцій. Ортографічне косокутне проектування на площину, застосування матриць. Розгляд проекцій картинної площини в лівосторонній системі координат спостерігача, погодження з екраном дисплея.

  • Нарисна геометрія

    Сутність і предмет вивчення нарисної геометрії, історія її зародження та розвитку як науки, яскраві представники. Методи проекцій точки та прямої, види та властивості проеціювання. Головні лінії площини. Відображення та проеціювання точок на площинах.

  • Аналітична геометрія

    Реферат на тему: Аналітична геометрія в просторі Аналітична геометрія в просторі Загальне рівняння площини в тривимірному просторі, яка проходить через точку (x0;y0;z0) перпендикулярно до вектора

  • Аксонометричні проекції

    Вивчення стандартних видів аксонометричних проекцій, які застосовуються як допоміжні до комплексних креслень у тих випадках, коли необхідне пояснююче наочне зображення форми деталей. Ізометрія, диметрія, способи їх побудови (осі, коефіцієнти спотворень).

  • Способи перетворення креслення

    Сутність основних способів перетворення проекцій: заміни площин проекцій та обертання. Перетворення креслення так, щоб площина загального положення стала паралельною одній з площин проекцій нової системи. Основні положення плоско-паралельного переміщення.

  • Поверхні

    Поняття та властивості поверхонь, їх класифікація та різновиди, відмінні риси. Креслення багатогранників та тіл обертання, правила та закономірності. Перетин поверхонь з прямою та площиною. Побудова лінії перетину поверхонь. Спосіб посередників.

  • Представлення і перетворення фігур

    ПРЕДСТАВЛЕННЯ І ПЕРЕТВОРЕННЯ ТОЧОК Представлення точок здійснюється наступним чином: На площині У просторі Перетворення точок. Розглянемо результати матричного множення

  • Застосування координатного методу в стереометрії

    Зміст Вступ 1. Просторова декартова прямокутна система координат. 2. Рівняння прямої та площини у просторі. 3. Умова паралельності та перпендикулярності двох прямих, двох площин, прямої та площини у просторі.