Referat.me

Название: Неединственность преобразований Лоренца.

Вид работы: статья

Рубрика: Математика

Размер файла: 14.49 Kb

Скачать файл: referat.me-215798.docx

Краткое описание работы: Основа физики – геометрия. Она определяет способы задания координат. Преобразования их единственны и это преобразования Лоренца внутри изотропного конуса. На поверхности изотропного конуса эти преобразования не обладают единственностью. Расстояние света.

Неединственность преобразований Лоренца.

Не единственность преобразований Лоренца.

Рассмотрим пространство Минковского и изотропный конус. Рассмотрим две точки М и М’ на поверхности изотропного конуса. Попробуем определить: есть ли единственность перевода точки М в точку М’, то есть, только ли известные преобразования Лоренца переводят М в М’.

Преобразования должны быть ортогональны, чтобы преобразования входили в ортогональную группу, для которой существует инвариант двух точек, то есть интервал, что дает нам право задать метрическую форму.

Рассматриваем, как получают условие ортогональности: оно начинается с рассмотрения вырожденности канонической квадратичной формы. Форма должна быть не вырожденной, тогда используется известная формула. Так как мы рассматриваем поверхность изотропного конуса, то форма у нас тождественный ноль, а значит вырождена. Это означает, что наша форма должна иметь на одну координату меньше, чем размерность пространства. (Все это общеизвестные факты, см. литературу.) Если точку М определяют координаты x,y,z,t, а точку М’ определяют координаты x’,y’,z’,t’, тогда преобразования Лоренца (не будем расписывать всем известные коэффициенты) выглядят:

(1) t=At’+Bx’, x=Dt’+Ex’ , y=y’, z= z’,

Чтобы форма не была тождественно равна нулю, и чтобы в ней было не четыре координаты (так как размерность пространства четыре) нам необходимо зафиксировать, к примеру, координату z=z^, z’=z^’. Разделим форму для x,y,z,t на z^, а форму для x’,y’,z’,t’ на z^’, а затем заменим все координаты:

(2) T=t/z^, X= x/z^, Y=y/z^ и T’=t’/z^’, X’=x’/z^’, Y’=y’/z^’,

ясно, что мы получили квадратичные формы в каноническом виде отличные от нуля (не будем их расписывать).

Подставим в (2) формулы (1), тогда (в трехмерном пространстве, на котором заданы координаты T,X,Y):

(3) T= AT’+BX’, X= DT’+EX’, Y=Y’,

уравнения (3) в точности совпадают с известными преобразованиями Лоренца, а значит ортогональны. Ч.т.д.

Но мы видим, что при введении произвольного коэффициента N для всех координат одновременно изменений в уравнениях (3) не произойдет, действительно, если

(4) t=N(At’+Bx’), x=N(Dt’+Ex’) , y=Ny’, z= Nz’,

то уравнения (3) не изменятся, при этом сохранится их ортогональность, но уравнения (1) не будут единственными. Интервал, записанный в координатах (4) не изменяется, так как он - тождественный ноль, исследование на ортогональность по известным формулам не проводится, так как форма вырождена, но после того, как придем к не вырожденной форме (в трехмерном пространстве, на котором заданы координаты T,X,Y), преобразования координат будут ортогональны. Надо отметить это возможно только на поверхности изотропного конуса.

Литература: 1) Н.В. Ефимов «Высшая геометрия».

2) Г.Е. Шилов «Математический анализ. Конечномерные линейные пространства».

12 мая 2008 год Игорь Елкин

Аннотация к статье «Преобразования Лоренца не единственны»:

Основа физики – геометрия, так как только геометрия определяет способы задания координат (это около 400 страниц высшей математики, туда входит проективная геометрия и теория групп). Вывод из этих теорий однозначен – преобразования координат единственны и это преобразования Лоренца, но это внутри изотропного конуса. Если рассмотреть поверхность изотропного конуса, то можно доказать на этом подпространстве, что эти преобразования не обладают единственностью. Самое интересное, что любые измерения расстояния (в трехмерном евклидовом пространстве) можно свести к измерению расстояния светом. Это означает, что мы все рассматриваем на поверхности изотропного конуса. Это уже означает, что все преобразования координат мы обязаны рассматривать на поверхности изотропного конуса, а они не обладают единственностью.

Похожие работы

  • Конус, и все что с ним связано

    КОНУС 1. Понятие конуса: тело, ограниченное конической поверхностью и кругом с границей L, называется конусом. Коническая поверхность называется боковой поверхностью конуса, а круг – основанием конуса

  • Цилиндр и конус

    Определения и свойства цилиндра и конуса.

  • Крах релятивизма Лоренца – Эйнштейна

    Принцип познания путем сравнения определен как принцип относительности. Впервые этот принцип сформулировал Галилей. Он рассматривал два тела, две системы отсчета, определяемые координатами x, y, z, которые измеряются в пространстве.

  • Современные понятия пространства, времени и ограниченность преобразований лоренца

    Понятие пространства и времени. Преобразование координат фронта световой волны. Сравнение с преобразованиями Лоренца. Простые следствия нелоренцевых преобразований координат.

  • Перемещение во времени трехмерного пространства

    Для простоты и наглядности введем коэффициент перемещения во времени, и определим его как отношение времени, на которое совершается перемещение к собственному времени затраченному на это перемещение.

  • Построение линии пересечения 2-х конусов и цилиндра

    Министерство общего и профессионального образования РФ Брянский Государственный Технический Университет кафедра «Высшая математика» Расчетно-графическая работа №1

  • Все о Конусе

    Муниципальное обще образовательное учреждение Средняя общеобразовательная школа №54 с углубленным изучение предметов социально-гуманитарного цикла центрального района города Новосибирска

  • Основные положения Специальной теории относительности

    Постулаты Эйнштейна. Современный релятивистский подход к описанию природных явлений базируется на двух постулатах Эйнштейна.

  • Геометрические свойства кривых второго порядка

    Цель курсовой работы Исследовать и изучить геометрические свойства кривых второго порядки (эллипса, гиперболы и параболы), представляющих собой линии пересечения кругового конуса с плоскостями, не проходящими через его вершины, а также научиться строить графики данных кривых в канонической и прямоугольной декартовой системах координат.

  • Тела вращения

    Цилиндр. Конус. Шар. Пирамида. Правильная пирамида. Многогранники. Призма.