Название: Конус, и все что с ним связано
Вид работы: реферат
Рубрика: Математика
Размер файла: 56.4 Kb
Скачать файл: referat.me-218947.docx
Краткое описание работы: КОНУС 1. Понятие конуса: тело, ограниченное конической поверхностью и кругом с границей L, называется конусом. Коническая поверхность называется боковой поверхностью конуса, а круг – основанием конуса
Конус, и все что с ним связано
КОНУС
1. Понятие конуса: тело, ограниченное конической поверхностью и кругом с границей L, называется конусом. Коническая поверхность называется боковой поверхностью конуса, а круг – основанием конуса
![]() |
2. Получение конуса: конус может быть получен вращением прямоугольного треугольника вокруг одного из его катетов.
|
|
|
|

3. Сечение конуса: если секущая плоскость проходит через ось конуса, то сечение представляет собой равнобедренный треугольник, основание которого – диаметр основания конуса, а боковые стороны – образующие конуса. Это сечение называется осевым.
Если секущая плоскость перпендикулярна к оси ОР конуса, то сечение конуса представляет собой круг с центром О1 , расположенной на оси конуса.
|

4. Площадь поверхности конуса: разверткой боковой поверхности конуса является круговой сектор, радиус которого равен образующей конуса, а длина дуги сектора – длине окружности основания конуса. За площадь боковой поверхности конуса принимается площадь ее развертки.
|
|
|
|
|
|
|
|

где α – градусная мера дуги АВА1
откуда
Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую.
Площадью полной поверхности конуса называется сумма площадей боковой поверхности и основания.
5. Усеченный конус, его получение и площадь:
|


|
|
|
|
|





|

Усеченный конус может быть получен вращением прямоугольной трапеции вокруг ее боковой стороны, перпендикулярной к основаниям.
Площадь боковой поверхности усеченного конуса равна произведению полусуммы длин окружностей оснований на образующую.
Похожие работы
-
Геометрические свойства регулярного круглого конуса в пространстве
Приведены явные формулы для вычисления множеств положительных и отрицательных частей произвольного элемента в пространстве , упорядоченном круглым регулярным конусом.
-
Конус, площадь его поверхности и объем
Систематизация и углубление знаний по теме “Конус”. Повысить интерес к геометрии, решая нестандартные задачи и отвечая на занимательные вопросы. Создание положительной внутренней мотивации обучения учащихся.
-
Цилиндр и конус
Определения и свойства цилиндра и конуса.
-
Формирование понятия цилиндра
I этап: Введение понятия цилиндр. Математическое видение цилиндра. Цель этапа Формирование пространственного представления и логического мышления учащихся при изучении и формировании математического видения цилиндра его характерных элементов и изображений.
-
Построение линии пересечения 2-х конусов и цилиндра
Министерство общего и профессионального образования РФ Брянский Государственный Технический Университет кафедра «Высшая математика» Расчетно-графическая работа №1
-
Все о Конусе
Муниципальное обще образовательное учреждение Средняя общеобразовательная школа №54 с углубленным изучение предметов социально-гуманитарного цикла центрального района города Новосибирска
-
Билеты по геометрии (11 класс)
Билет № 3 Взаимное расположение прямой и плоскости в пространстве Объем призмы. Три случая расположения прямой и плоскости. 1.Плоскость и прямая имеют одну оющую точку
-
Неединственность преобразований Лоренца.
Основа физики – геометрия. Она определяет способы задания координат. Преобразования их единственны и это преобразования Лоренца внутри изотропного конуса. На поверхности изотропного конуса эти преобразования не обладают единственностью. Расстояние света.
-
Задачи на наибольшее и наименьшее значения функций
Задачи на наибольшее и наименьшее значения функции Требуется изготовить коническую воронку с образующей l=10см. Каков должен быть радиус основания воронки, чтобы ее объем был наибольшим?
-
Тела вращения
Цилиндр. Конус. Шар. Пирамида. Правильная пирамида. Многогранники. Призма.