Название: Дифференцированные уравнения
Вид работы: реферат
Рубрика: Математика
Размер файла: 515.58 Kb
Скачать файл: referat.me-216855.docx
Краткое описание работы: 1.ВВЕДЕНИЕ 2.ОСНОВНЫЕ ПОНЯТИЯ 2.1.ЗАПИСЬ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В СТАНДАРТНОЙ И ОПЕРАТОРНОЙ ФОРМЕ В теории автоматического регулирования в настоящее время принято записывать дифференциальные уравнения в двух формах.
Дифференцированные уравнения
1.ВВЕДЕНИЕ
2.ОСНОВНЫЕ ПОНЯТИЯ
2.1.ЗАПИСЬ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
В СТАНДАРТНОЙ И ОПЕРАТОРНОЙ ФОРМЕ
В теории автоматического регулирования в настоящее время принято записывать дифференциальные уравнения в двух формах.
Первая форма записи . Дифференциальные уравнения записываются так, чтобы выходная величина и ее производные находились в левой части уравнения, а входная величина и все остальные члены - в правой части. Кроме того, принято, чтобы, сама выходная величина находилась в уравнении с коэффициентом единица. Такое уравнение имеет вид:
= (1)
При такой записи коэффициенты k,k1 ,...,kn называют коэффициентами передачи , а T1 ,...,Tn -постоянными времени данного звена.
Коэффициент передачи показывает отношение выходной величины звена к входной в установившемся режиме, т.е. определяет собой наклон линейной статической характеристики звена.
Размерности коэффициентов передачи определяются как
размерность k = размерность y(t) : размерность g(t)
размерность k1 = размерность y(t) : размерность g(t) (?)
Постоянными времени T1 ,...,Tn имеют размерность времени.
Вторая форма записи
.
Считая условно оператор дифференцирования p= алгебраической величиной, произведем замену в уравнении (1):
=
= (2)
2.2. ПЕРЕДАТОЧНАЯ ФУНКЦИЯ ЗВЕНА
Решим уравнение (2) относительно выходной величины y(t):
y(t)==
==
=W1 (s)+W2 (s)+...+Wn (s)
Здесь W1 (s),W2 (s),...,Wn (s) - передаточные функции.
При записи уравнений с изображениями выходной и входной величин по Лапласу передаточные функции сливаются в одну.
2.3. ВРЕМЕННЫЕ ХАРАКТЕРИСТИКИ ЗВЕНА
Динамические свойства звена могут быть определены по его переходной функции и функции веса.
Переходная функция h(t) представляет собой переходный процесс на выходе из звена, возникающий при подаче на его вход единичного ступенчатого воздействия - скачкообразного воздействия со скачком, равной единице.
Функция веса w(t) представляет собой реакцию на единичную импульсную функцию. Она может быть получена дифференцированием по времени переходной функции:
w(t)=
2.4.ЧАСТОТНАЯ ПЕРЕДАТОЧНАЯ ФУНКЦИЯ И ЧАСТОТНЫЕ
ХАРАКТЕРИСТИКИ
Важнейшей характкристикой динамического звена является его частотная передаточная функция. Ее можно получить с помощью передаточной фкнкции, заменив линейный оператор s на комплексный jw.
Так как передаточная функция есть отношение изображения по Лапласу выходной величины к входной, то при переходе от изображения Лапласа к изображению Фурье, мы получим, что частотная передаточная функция является изображением Фурье функции веса, то есть имеет место интегральное преобразование
W(j)=.
Частотная передаточная функция может быть представлена в следующем виде:
W(jw)=U(w)+jV(w)
где U(w) и V(w) - вещественная и мнимая части.
W(jw)=A(w),
где A(w) - модуль частотной передаточной функции, равный отношению амплитуде выходнгой величины к амплитуде входной,j(w) - аргументчастотной передаточной функции, равный сдвигу фаз выходной величины по отношению к входной.
Для наглядного представления частотных свойств звена используются так называемые частотные характеристики.
Амплитудная частотная характеристика (АЧХ) показывает, как пропускает звено сигнал различой частоты. Оценка пропускания делается по отношению амплитуд выходной и входной величин. То есть АЧХ - это модуль частотной передаточной функции:
A(w)=ЅW(jw)Ѕ
АЧХ строят для всео диапазона частот -Ґ<w
Другой важной характеристикой является фазовая частотная характеристика (ФЧХ), которая находится как аргумент частотной передаточной функции:
j(w)=argW(jw)
4. ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЗВЕНЬЕВ
4.1. ПОЗИЦИОННЫЕ ЗВЕНЬЯ
Позиционные звенья - это такие звенья , в которых выходная и входная величины в установившемся режиме связаны линейной зависимостью y(t)=kg(t).Соответственно, переходная функция будет иметь вид W(s)=k, где N(s), L(s) - многочлены.
4.1.1.ИДЕАЛЬНОЕ УСИЛИТЕЛЬНОЕ ( БЕЗЫНЕРЦИОННОЕ ) ЗВЕНО
1. Данное звено описывается следующим уравнением:
ao y(t)=bo g(t) (1)
Коэффициенты имеют следующие значения:
ao =2
bo =4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao :
y(t)=g(t)
y(t)=kg(t) (2),
где k=-коэффициент передачи.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
y(t)=kg(t) (3)
2. Получим передаточную функцию для идеального звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
Y(s)=kG(s)
W(s)=k (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1. Тогда
h(t)=k1(t) (5)
Функцию веса можно получить дифференцированием переходной функции:
w(t)==kd(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи и временные характеристики:
k=2
h(t)=2Ч1(t)
w(t)=2Чd(t)
Переходная функция представляет собой ступенчатую функцию с шагом k=2, а функция веса - импульсную функцию, площадь которой равна k=2.
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=k
W(jw)=k (7)
W(jw)=U(w)+jV(w)
U(w)=k
V(w)=0
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A(w)=ЅW(jw)Ѕ
A(w)=k (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=0 (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lgk
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
k=2
A(w)=2
j(w)=0
L(w)=20lg2
U(w)=2
V(w)=0
Вывод: Примером рассмотренного звена может являться механический редуктор, делитель напряжения, индукционные датчики и т.д. Но беэынерционное звено является некоторой идеализацией реальных звеньев. В действительности ни одно звено не может равномерно пропускать все частоты от нуля до бесконечности. Обычно к такому виду сводится одно из реальных звеньев , рассмотренных ниже , если можно пренебречь влиянием динамических процессов.
4.1.2. УСИЛИТЕЛЬНОЕ ЗВЕНО С ЗАПАЗДЫВАНИЕМ
1. Данное звено описывается следующим уравнением:
ao y(t)=bo g(t-t) (1)
Коэффициенты имеют следующие значения:
ao =2
bo =4
t=0,1с
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao :
y(t)= g(t-t)
y(t)=kg(t-t) (2),
где k=-коэффициент передачи.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
y(t)=kg(t-t) (3)
2. Получим передаточную функцию для идеального звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
g(t-t)=G(s)e-ts
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
Y(s)=kG(s)e-ts
W(s)= ke-ts (4)
3. Найдем выражения для переходной функции и функции веса. ПО определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1.Тогда
h(t)=y(t)=k g(t-t)=k1(t) (5)
Функцию веса можно получить дифференцированием переходной функции:
w(t)==kd(t-t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи и временные характеристики:
k=2
h(t)=2Ч1(t-t)
w(t)=2Чd(t-t)
Переходная функция представляет собой ступенчатую функцию с шагом k=2 и запаздыванием на t=0,1с, а функция веса - импульсную функцию с таким же запаздыванием, площадь которой равна k=2.
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=k e-ts
W(jw)=k e-jwt =k(costw-jsintw) (7)
W(jw)=U(w)+jV(w)
U(w)=k costw
V(w)=-ksintw
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A(w)=ЅW(jw)Ѕ
A(w)=k (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)= tw (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lgk
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
k=2
A(w)=2
j(w)=0,1w
L(w)=20lg2
U(w)=2cos0,1w
V(w)=-2sin0,1w
Вывод:
4.1.3. УСТОЙЧИВОЕ АПЕРИОДИЧЕСКОЕ ЗВЕНО 1-го ПОРЯДКА
1. Данное звено описывается следующим уравнением:
a1
+ao
y(t) =bo
g(t) (1)
Коэффициенты имеют следующие значения:
a1 =1,24
ao =2
bo =4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
+y(t)=
g(t)
T1
+y(t)=kg(t) (2),
где k=-коэффициент передачи,
T1
=-постоянная времени.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(T1 p+1)y(t)=kg(t) (3)
2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
=sY(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
T1 sY(s)+Y(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)=
=
Переходя к оригиналу, получим
h(t)=kЧ1(t) (5)
Функцию веса можно получить дифференцированием переходной функции
w(t)=
или из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)Ч1
W(s)==
Переходя к оригиналу, получим
w(t)= e
Ч1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
k=2
T1 =0.62
h(t)=2Ч1(t)
w(t)=3.2eЧ1(t)
Переходная функция представляет собой экспоненту. Множитель 1(t) указывает ,что экспонента рассматривается только для положительного времени t>0. Функция веса - также экспонента, но со скачком в точке t=0 на величину.
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)= (7)
W(jw)=U(w)+jV(w)==
-j
U(w)=
V(w)=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции,т.е.
A(w)=ЅW(jw)Ѕ
A(w)==
(8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=arctgk - arctg
j(w)=-arctgT1 (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lg
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
k=2
T1 =0.62
A(w)=
j(w)=arctg0.62w
L(w)=20lg
U(w)=
V(w)=
4.1.4. НЕУСТОЙЧИВОЕ АПЕРИОДИЧЕСКОЕ ЗВЕНО
1-го ПОРЯДКА
1. Данное звено описывается следующим уравнением:
a1
-ao
y(t) =bo
g(t) (1)
Коэффициенты имеют следующие значения:
a1 =1,24
ao =2
bo =4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
-y(t)=
g(t)
T-y(t)=kg(t) (2),
где k=-коэффициент передачи,
T=-постоянная времени.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(Tp-1)y(t)=kg(t) (3)
2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:
y(t) = Y(s)
=sY(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
TsY(s)-Y(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)=
=
Переходя к оригиналу, получим
h(t)=kЧ1(t) (5)
Функцию веса можно получить дифференцированием переходной функции
w(t)=
или из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)Ч1
W(s)==
Переходя к оригиналу, получим
w(t)= e
Ч1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
k=2
T=0.62
h(t)=2Ч1(t)
w(t)=3.2eЧ1(t)
Переходная функция представляет собой экспоненту. Множитель 1(t) указывает ,что экспонента рассматривается только для положительного времени t>0. Функция веса - также экспонента, но со скачком в точке t=0 на величину.
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)= (7)
W(jw)==
j
=U(w)+jV(w)
U(w)=
V(w)=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A(w)=ЅW(jw)Ѕ
A(w)==
(8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=arctgk - arctg
j(w)=-arctg(-Tw) (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lg
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
k=2
T=0.62
A(w)=
j(w)=-arctg(-0.62w)
L(w)=20lg
U(w)=
V(w)=
4.1.5. АПЕРИОДИЧЕСКОЕ ЗВЕНО 2-го ПОРЯДКА
1. Данное звено описывается следующим уравнением:
a2
+a1
+ao
y(t) =bo
g(t) (1)
Коэффициенты имеют следующие значения:
a2 =0,588
a1 =50,4
ao =120
bo =312
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
+
+y(t)=
g(t)
+T1
+y(t)=kg(t) (2),
где k=-коэффициент передачи,
T1
=,T2
2
=
-постоянные времени.
Если корни характеристического уравнения для дифференциального уравнения 2-го порядка вещественны (это выполняется при T1 >2T2 ), то оно является апериодическим 2-го порядка. Проверим это для нашего уравнения:
T1 =0,42
2T2 =0,14
0,42>014, следовательно, данное уравнение - апериодическое.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(p2
+T1
p+1)y(t)=kg(t) (3)
2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:
y(t) = Y(s)
=sY(s)
=s2
Y(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
s2
Y(s)+T1
sY(s)+Y(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)=
=
, где
T3,4
=
Разложив на элементарные дроби правую часть этого выражения, получим
H(s)=
=
Переходя к оригиналу, получим
h(t)=kЧ1(t) =
=k Ч1(t)(5)
Функцию веса можно получить дифференцированием переходной функции
w(t)=
или из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)Ч1==
Разложив на элементарные дроби правую часть этого выражения, получим
w(s)=
=
Переходя к оригиналу, получим
w(t)= =
= (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)= (7)
Выделим вещественную и мнимую части :
W(jw) ==
U(w)=
V(w)=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A(w)=ЅW(jw)Ѕ
A(w)==..............(8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=................
j(w)=............... (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=...................
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
4.1.6. КОЛЕБАТЕЛЬНОЕ (УСТОЙЧИВОЕ) ЗВЕНО
1. Данное звено описывается следующим уравнением:
a2
+a1
+ao
y(t) =bo
g(t) (1)
Коэффициенты имеют следующие значения:
a2 =0,588
a1 =0,504
ao =12
bo =31,20
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
+
+y(t)=
g(t)
+T1
+y(t)=kg(t) (2),
где k=-коэффициент передачи,
T1
=,T2
2
=
-постоянные времени.
Если корни характеристического уравнения для дифференциального уравнения 2-го порядка комплексные (это выполняется при T1 <2T2 ), то оно является колебательным. Проверим это для нашего уравнения:
T1 =0,042
2T2 =0,14
0,042
Представим данное уравнение в следующем виде:
пусть T2
=T, .
Тогда уравнение (2):
Здесь T - постоянная времени, x - декремент затухания (0<x<1).
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(p2
+2xTp+1)y(t)=kg(t) (3)
2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:
y(t) = Y(s)
=sY(s)
=s2
Y(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
s2
Y(s)+2xTsY(s)+Y(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)=
Разложив на элементарные дроби правую часть этого выражения, получим
H(s)==
=
Заменим в этом выражении ,
.Тогда
H(s)==
=
Переходя к оригиналу, получим
h(t)=k =
=k Ч1(t) (5)
Функцию веса можно получить дифференцированием переходной функции
w(t)=
или из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)Ч1==
=
=
Переходя к оригиналу, получим
w(t)= (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)= (7)
Выделим вещественную и мнимую части :
W(jw)=
U(w)=
V(w)
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A(w)=ЅW(jw)Ѕ
A(w)==
(8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=argk - arg(2xTjw - T2
w2
+1)= - arctg
j(w)= - arctg (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lg
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
4.1.6. КОЛЕБАТЕЛЬНОЕ (НЕУСТОЙЧИВОЕ) ЗВЕНО
1. Данное звено описывается следующим уравнением:
a2
- a1
+ao
y(t) =bo
g(t) (1)
Коэффициенты имеют следующие значения:
a2 =0,588
a1 =0,504
ao =12
bo =31,20
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
-
+y(t)=
g(t)
-T1
+y(t)=kg(t) (2),
где k=-коэффициент передачи,
T1
=,T2
2
=
-постоянные времени.
Если корни характеристического уравнения для дифференциального уравнения 2-го порядка комплексные (это выполняется при T1 <2T2 ), то оно является колебательным. Проверим это для нашего уравнения:
T1 =0,042
2T2 =0,14
0,042
Представим данное уравнение в следующем виде:
пусть T2
=T, .
Тогда уравнение (2):
Здесь T - постоянная времени, x - декремент затухания (0<x<1).
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(p2
- 2xTp+1)y(t)=kg(t) (3)
2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:
y(t) = Y(s)
=sY(s)
=s2
Y(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
s2
Y(s) - 2xTsY(s)+Y(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)=
Разложив на элементарные дроби правую часть этого выражения, получим
H(s)==
=
Заменим в этом выражении ,
.Тогда
H(s)==
=
Переходя к оригиналу, получим
h(t)=k =
=k Ч1(t) (5)
Функцию веса можно получить дифференцированием переходной функции
w(t)=
или из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)Ч1==
=
=
Переходя к оригиналу, получим
w(t)= (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)= (7)
Выделим вещественную и мнимую части :
W(jw)=
U(w)=
V(w)
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A(w)=ЅW(jw)Ѕ
A(w)==
(8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=argk - arg(1 - 2xTjw - T2
w2
)= - arctg
j(w)= - arctg (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lg
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
4.1.5. КОЛЕБАТЕЛЬНОЕ КОНСЕРВАТИВНОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
a2
+ao
y(t) =bo
g(t) (1)
Коэффициенты имеют следующие значения:
a2 =0,0588
ao =12
bo =31,20
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
+y(t)=
g(t)
+ y(t)=kg(t) (2),
где k=-коэффициент передачи,
T2
=-постоянная времени.
Это уравнение является частным случаем колебательного уравнения при x=0.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(T2 p2 +1)y(t)=kg(t) (3)
2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:
y(t) = Y(s)
=s2
Y(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
T2 s2 Y(s)+Y(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)=
Разложив на элементарные дроби правую часть этого выражения, получим
H(s)=
Заменим .Тогда
H(s)=
Переходя к оригиналу, получим
h(t)=kЧ1(t) (5)
Функцию веса можно получить из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)Ч1==
=
Переходя к оригиналу, получим
w(t)= kw0 sinw0 tЧ1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)= (7)
U(w)=
V(w)=0
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A(w)=ЅW(jw)Ѕ
A(w)==(8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=argk - arg(1-T2 w2 )=0 (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lg (10)
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
4.2. ИНТЕГРИРУЮЩИЕ ЗВЕНЬЯ
4.2.1. ИНТЕГРИРУЮЩЕЕ ИДЕАЛЬНОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
a1
=bo
g(t) (1)
Коэффициенты имеют следующие значения:
a1 =1,24
bo =4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на a1 :
=
g(t)
=kg(t) (2),
где k=-коэффициент передачи.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
py(t)=kg(t) (3)
2. Получим передаточную функцию для данного звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
=sY(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
sY(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)=
Переходя к оригиналу, получим
h(t)=ktЧ1(t) (5)
Функцию веса можно получить дифференцированием переходной функции
w(t)=
w(t)==kЧ1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)= (7)
W(jw)=
U(w)=0
V(w)=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции,т.е.
A(w)=ЅW(jw)Ѕ
A(w)==
(8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=argk - argjw
j(w)= - arctgw (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lg
7. Построим графики частотных характеристик.Для этого сначала получим их численные значения.
4.2.2. ИНТЕГРИРУЮЩЕЕ ИНЕРЦИОННОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
+a1
=bo
g(t) (1)
Коэффициенты имеют следующие значения:
a2 =0,0588
a1 =0,504
bo =31,20
Запишем это уравнение в стандартной форме. Для этого разделим (1) на a1 :
+
=
g(t)
T+
=kg(t) (2),
где k=-коэффициент передачи,
T=-постоянная времени.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(Tp2 +p)y(t)=kg(t) (3)
2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
=sY(s)
=s2
Y(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
Ts2 Y(s)+sY(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)=
Разложив на элементарные дроби правую часть этого выражения, получим
H(s)=
Переходя к оригиналу, получим
h(t)= - kTЧ1(t)+ktЧ1(t)+kTЧ1(t)=
= (5)
Функцию веса можно получить из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)Ч1=
Разложив на элементарные дроби правую часть этого выражения, получим
w(s)=
Переходя к оригиналу, получим
w(t)=kЧ1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)= (7)
W(jw)
U(w)=
V(w)=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции,т.е.
A(w)=ЅW(jw)Ѕ
A(w)==
(8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=argk - argjw - arg
j(w)= - arctgw - arctgTw (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lg
7. Построим графики частотных характеристик.Для этого сначала получим их численные значения.
4.2.3. ИЗОДРОМНОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
a1
=b1
+bo
g(t) (1)
Коэффициенты имеют следующие значения:
a1 =1,24
bo =4
b1 =4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на a1 :
=
+
g(t)
=k1
+kg(t) (2),
где k1
=, k=
-коэффициент передачи.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
py(t)=(k1 p+k)g(t) (3)
2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
=sY(s)
g(t)=G(s)
=sG(t)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
sY(s)=k1 sG(s)+kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s) =
Переходя к оригиналу, получим
h(t)= Ч 1(t) (5)
Функцию веса можно получить из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)Ч1
W(s)=
Переходя к оригиналу, получим
w(t)= k1 Чd(t)+kЧ1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)= (7)
U(w)=k1
V(w)=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции,т.е.
A(w)=ЅW(jw)Ѕ
A(w)=............(8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=............
j(w)=............ (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lg........
7. Построим графики частотных характеристик.Для этого сначала получим их численные значения.
4.3.1.ДИФФЕРЕНЦИРУЮЩЕЕ ИДЕАЛЬНОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
ao
y(t)=b1
(1)
Коэффициенты имеют следующие значения:
ao =2
b1 =4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao :
y(t)=
y(t)=k (2),
где k=-коэффициент передачи.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
y(t)=kpg(t) (3)
2. Получим передаточную функцию для идеального звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
g(t)=G(s)
=sG(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
Y(s)=ksG(s)
W(s)=ks (4)
3. Найдем выражения для переходной функции и функции веса из преобразлваний Лапласа,т.е.
h(t)=H(s)
H(s)=W(s)=k
Переходя к оригиналу, получим
h(t)=kЧd(t) (5)
Функцию веса можно получить по преобразованию Лапласа из передаточной функции:
w(t)=w(s)
w(s)=W(s)Ч1=ks
Переходя к оригиналу, получим
w(t)=k (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=ks
W(jw)=jkw (7)
W(jw)=U(w)+jV(w)
U(w)=0
V(w)=kw
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A(w)=ЅW(jw)Ѕ
A(w)=kЅwЅ (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=arctgkw (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lgkЅwЅ
7. Построим графики частотных характеристик. Для этого сначала получим их численные выражения.
4.3.2.ДИФФЕРЕНЦИРУЮЩЕЕ РЕАЛЬНОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
a1
+ao
y(t) =b1
(1)
Коэффициенты имеют следующие значения:
a1 =1,24
ao =2
b1 =4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на a1 :
+y(t)=
T+y(t)=k
(2),
где k=-коэффициент передачи,
T1
=-постоянная времени.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(Tp+1)y(t)=kpg(t) (3)
2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
=sY(s)
g(t)=G(s)
=sG(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
TsY(s)+Y(s)=ksG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)=
=
Переходя к оригиналу, получим
h(t)=Ч1(t) (5)
Функцию веса можно получить из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)Ч1
W(s)= =
Переходя к оригиналу, получим
w(t)=Чd(t)
e
Ч1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)=
W(jw)==
6.Найдем АЧХ:
A(w)=ЅW(jw)Ѕ
A(w)==
Найдем ФЧХ:
j(w)=argW(jw)
j(w)=arctgkw-arctgTw
L(w)=20lgA(w)
L(w)=20lg
4.3.3.ФОРСИРУЮЩЕЕ ЗВЕНО 1-го ПОРЯДКА
Данное звено описывается следующим уравнением:
a0y(t)=b1+b0g(t)
y(t)=+
g(t)
k1=
k=
p=
y(t)=k1pg(t)+kg(t)
y(t)=Y(s)
g(t)=G(s)
Y(s)=k1sG(s)+kG(s)
W(s)=k1s+k
H(s)==k1+
h(t)=k1d(t)+k1(t)
W(jw)=k1jw+k
U(w)=k
V(w)=k1w
A(w)=ЅW(jw)Ѕ
A(w)=
j(w)=argW(jw)
j(w)=arctg
L(w)=20lgA(w)
L(w)=20lg
4.3.4.ФОРСИРУЮЩЕЕ ЗВЕНО 2-го ПОРЯДКА
a0y(t)=b2+b1
+b0g(t)
y(t)=+
+
g(t)
y(t)=k2+k1
+kg(t)
y(t)=k2p2g(t)+k1pg(t)+kg(t)
Y(s)=(k2s2+k1s+k)G(s)
W(s)=k2s2+k1s+k
H(s)=k2s+k1+
h(t)=k2+k1d(t)+k11(t)
w(s)=W(s)=k2s2+k1s+k
w(t)=k2+k1
+kd(t)
W(jw)=k1jw+k - k2w2
U(w)=k - k2w2
V(w)=k1jw
A(w)=
j(w)=arctg
L(w)=20lg
Похожие работы
-
Кривые разгона объекта управления
Цель работы 1. Изучить методику экспериментального определения кривых разгона объекта управления и определить кривые разгона по каналам регулирования и возмущения для напорного бака.
-
Теория устойчивости
Введение Одной из основных задач теории автоматического регулирования является изучение динамических процессов, происходящих в автоматических системах. Автоматические системы при нормальной эксплуатации должны поддерживать определенный режим работы объекта регулирования при действии на него многих возмущающих факторов.
-
Замечательное уравнение кинематики
В предлагаемой статье рассмотрена возможность расширения сферы применения кинематических уравнений для решения задач механики. Показана возможность переноса метода составления простейших уравнений движения.
-
Экзаменационные билеты по теоретической механике
Билеты по разделу "Динамика".
-
Теория устойчивости
4. Критерий устойчивости Михайлова. Частотные критерии устойчивости получили наиболее широкое практическое применение, так как, во-первых, они позволяют судить об устойчивости замкнутой системы по более простой передаточной функции системы W ( s ) ; во-вторых, анализ устойчивости можно выполнять и по экспериментально определенным частотным характеристикам; в-третьих, с помощью частотных характеристик можно судить и о качестве переходных процессов в системе.
-
Синтез САУ
Задание для курсовой работы по теории управления Исследовать систему, при обнаружении свойств, отрицательно влияющих на работоспособность системы, удалить их, или уменьшить их влияние. При необходимости обеспечить регулирование наилучшем регулятором.
-
Дифференциальные уравнения
Основные понятия и определения.
-
Исследование циркуляции судна
Санкт-Петербургский Государственный Университет Факультет Прикладной Математики – Процессов Управления Кафедра Математической Теории Моделирования Систем управления
-
Дифференциальные уравнения линейных систем автоматического регулирования
Определение динамических свойств объектов с помощью дифференциальных уравнений для сравнительно простых объектов. Выражение входной и выходной величины элемента в долях, введение безразмерных координат. График кривой разгона, коэффициент усиления.
-
Анализ дифференциальных уравнений
Порядок и процедура поиска решения дифференциального уравнения. Теорема существования и единственности решения задачи Коши. Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка, с разделяющими переменными.