Название: Приближенное решение уравнений методом хорд и касательных
Вид работы: реферат
Рубрика: Математика
Размер файла: 21.66 Kb
Скачать файл: referat.me-217003.docx
Краткое описание работы: Магнитогорский государственный технический университет Приближенное решение уравнений методом хорд и касательных Подготовил: Григоренко М.В. Студент группы ФГК-98
Приближенное решение уравнений методом хорд и касательных
Магнитогорский государственный технический университет
Приближенное решение уравнений методом хорд и касательных
Подготовил: Григоренко М.В.
Студент группы ФГК-98
Магнитогорск –1999
Ведение
Для решения были предложены следующие уравнения:
x3 – 4x – 2 = 0 и 4x = cosx
При решении каждого уравнения вводится соответствующая функция (¦(x) = x3 – 4x – 2 и ¦(x) = 4x – cosx), а решениями уравнения являются нули соответствующей функции.
Следует отметить, что обе функции непрерывны и дважды дифференцируемы на всей области определения (–¥ ; ¥).
Необходимо найти приближенные решения уравнений с заданной точностью (0,001). С целью упростить работу (в частности, избавить человека от однотипных арифметических и логических операций) и обеспечить максимальную точность вычислениям, при решении данных уравнений была использована ЭВМ и программы на языке Turbo Pascal 7.0, созданные специально для решения данных задач.
Способ хорд
Теоретическая часть
Данный способ можно свести к следующему алгоритму:
1. Разделим всю область исследования (Df) отрезки, такие, что внутри каждого отрезка [x1 ;x2 ] функция монотонная, а на его концах значения функции ¦(x1 ) и ¦(x2 ) разных знаков. Так как функция ¦(x) непрерывна на отрезке [x1 ;x2 ], то ее график пересечет ось ОХ в какой либо одной точке между x1 и x2 .
2. Проведем хорду АВ, соединяющую концы кривой y = ¦(x), соответствующие абсциссам x1 и x2 . Абсцисса a1 точки пересечения этой хорды с осью ОХ и будет приближенным значением корня. Для разыскания этого приближенного значения напишем уравнение прямой АВ, проходящей через две данные точки A(x1 ;¦(x1 )) и B(x2 ; ¦(x2 )), в каноническом виде:
;
Учитывая, что y = 0 при x = a1 , выразим из данного уравнения a1 :
3. Чтобы получить более точное значение корня, определяем ¦(а1 ). Если на данном отрезке мы имеем ¦(x1 )<0, ¦(x2 )>0 и ¦(a1 )<0, то повторяем тот же прием, применяя формулу (1) к отрезку [a1 ;x2 ]. Если ¦(x1 )>0, ¦(x2 )<0 и ¦(a1 )>0, то применяем эту формулу к отрезку [x1 ;a1 ]. Повторяя этот прием несколько раз, мы будем получать все более точные значения корня а2 , а3 и т.д.
Пример 1. x3 – 4x – 2 = 0
¦(x) = x3 – 4x – 2,
¦¢(x) = 3x2 – 4,
производная меняет знак в точках
¦¢(x)
+ – +
¦(x)
х
функция ¦(x) монотонно возрастает при xÎ(–¥;] и при хÎ[
;¥), и монотонно убывает при xÎ[
;
].
Итак, функция имеет три участка монотонности, на каждом из которых находится по одному корню.
Для удобств дальнейших вычислений сузим эти участки монотонности. Для этого подставляем наугад в выражение ¦(х) наугад те или иные значения х, выделим внутри каждого участка монотонности такие более короткие отрезки, на концах которых функция имеет разные знаки:
¦(–2)= –2,
¦(–1)= 1,
¦(0)= –2,
¦(1)= –5,
¦(2)= –2,
¦(3)= 13.
Таким образом, корни находятся в интервалах
(–2;–1), (–1;0), (2;3).
Пункты 2 и 3 алгоритма выполняются при помощи ЭВМ (текст соответствующей программы приводится в Приложении 1) Программа выводит последовательность приближенных значений с увеличивающейся точностью для каждого из участков:
|

a1=-1.33333 при х1=-2.00000 и x2=-1.00000
a2=-1.55000 при х1=-2.00000 и x2=-1.33333
a3=-1.63653 при х1=-2.00000 и x2=-1.55000
a4=-1.66394 при х1=-2.00000 и x2=-1.63653
a5=-1.67195 при х1=-2.00000 и x2=-1.66394
a6=-1.67423 при х1=-2.00000 и x2=-1.67195
a7=-1.67488 при х1=-2.00000 и x2=-1.67423
a8=-1.67506 при х1=-2.00000 и x2=-1.67488
a9=-1.67511 при х1=-2.00000 и x2=-1.67506
a10=-1.67513 при х1=-2.00000 и x2=-1.67511
a11=-1.67513 при х1=-2.00000 и x2=-1.67513
для (2;3)
a1=2.13333 при х1=2.00000 и x2=3.00000
a2=2.18501 при х1=2.13333 и x2=3.00000
a3=2.20388 при х1=2.18501 и x2=3.00000
a4=2.21063 при х1=2.20388 и x2=3.00000
a5=2.21302 при х1=2.21063 и x2=3.00000
a6=2.21386 при х1=2.21302 и x2=3.00000
a7=2.21416 при х1=2.21386 и x2=3.00000
a8=2.21426 при х1=2.21416 и x2=3.00000
a9=2.21430 при х1=2.21426 и x2=3.00000
a10=2.21431 при х1=2.21430 и x2=3.00000
Приближенным значением корня уравнения на отрезке
(–2;–1) является x = –1,6751
Похожие работы
-
Решение нелинейных уравнений
Задание №1 Отделить корни уравнения графически и уточнить один из них: · методом половинного деления; · методом хорд; · методом касательных; · методом секущих;
-
Решение нелинейных уравнений с одной переменной
Раздел 2. Численные методы Тема 1. Решение нелинейных уравнений с одной переменной 1.1. Постановка задачи При решении ряда задач физики, механики и техники возникает необходимость решения уравнений с одной переменной. В общем случае нелинейное уравнение можно записать в виде: F(x)=0, где функция F(x) определена и непрерывна на промежутке {a, b}.
-
Приближённое решение алгебраических и трансцендентных уравнений
Приближённое решение алгебраических и трансцендентных уравнений 1. Общая постановка задачи. Найти действительные корни уравнения , где - алгебраическая или трансцендентная функция.
-
Нелинейное уравнение и интервал изоляции корня
Изучение методов уточнения корней нелинейных уравнений (половинного деления, хорд, касательных, простой итерации). Метод хорд и касательных дает высокую скорость сходимости при решении уравнений, и небольшую - метод половинного деления и простой итерации.
-
Нахождение всех действительных корней алгебраического многочлена методом деления отрезка пополам (бисекции)
В данной курсовой работе рассмотрен принцип нахождения корней алгебраического многочлена следующими численными методами: метод бисекции, метод хорд и касательных, метод разложения на множители с учетом определяемой точности.
-
Приближенное вычисление корней в уравнения
Приближённое решение уравнений: метод хорд, метод касательных, комбинированный способ.
-
Приближенное вычисление определенных интегралов
Магнитогорский Государственный технический университет Приближенное вычисление определенных интегралов. Формула парабол (формула симпсона) Подготовил: Студент группы ФГК-98 Григоренко М.В.
-
Метод прогонки решения систем с трехдиагональными матрицами коэффициентов
Магнитогорский Государственный Технический Университет имени Г.И.Носова Кафедра математики Реферат Тема: Метод прогонки решения систем с трехдиагональными
-
Вычисление корней нелинейного уравнения
Министерство образования Российской федерации Южно-Уральский Государственный Университет Аэрокосмический факультет Кафедра летательных аппаратов
-
Решение нелинейных уравнений
Графическое решение нелинейного уравнения. Уточнение значение одного из действительных решений уравнения методами половинного деления, Ньютона–Рафсона, секущих, простой итерации, хорд и касательных, конечно-разностным и комбинированным методом Ньютона.