Название: Простые числа Мерсенна. Совершенные числа
Вид работы: реферат
Рубрика: Математика
Размер файла: 15.13 Kb
Скачать файл: referat.me-217015.docx
Краткое описание работы: Среди простых чисел особую роль играют простые числа Мерсенна - числа вида 1)М -1 , где - простое число. Они называются простыми числами Мерсенна по имени французского монаха Мерена Мерсенна (1588-1648), одного из основателей Парижской Академии наук, друга Декарта и Ферма. Так как
Простые числа Мерсенна. Совершенные числа
Простые Числа Мерсенна, совершенные числа.
Среди простых чисел особую роль играют простые числа Мерсенна - числа вида 1)Мр = 2р -1 , где р - простое число. Они называются простыми числами Мерсенна по имени французского монаха Мерена Мерсенна (1588-1648), одного из основателей Парижской Академии наук, друга Декарта и Ферма. Так как М2 =3, М3 =7, М5 =31, М7 =127 , то это - простые числа Мерсенна. Однако, число 2)М11 =2047=23 . 89 простым не является. До 1750 года было найдено всего 8 простых чисел Мерсенна: М2 , М3 , М5 , М7 , М13 , М17 , М19 , М31 . То, что М31 - простое число, доказал в 1750 году Л. Эйлер. В 1876 году французский математик Эдуард Люка
установил, что число
3)М127 =170141183460469231731687303715884105727
- простое. В 1883 г. Сельский священник Пермской губернии И.М.Первушин без всяких вычислительных приборов доказал, что число М61 =2305843009213693951 является простым. Позднее было установлено, что числа М89 и М107 - простые. Использование ЭВМ позволило в 1952-1964 годах доказать, что числа М521 , М607 , М1279 , М2203 , М2281 , М3217 , М4253 , М4423 , М2689 , М9941 , М11213 - простые. К настоящему времени известно уже более 30 простых чисел Мерсенна, одно из которых М216091 имеет 65050 цифр. Большой интерес к простым числам Мерсенна вызван их тесной связью с совершенными числами.
Натуральное число Р называется совершенным, если оно равно сумме всех своих делителей кроме Р .
Евклид доказал, что если р и 2р -1 - простые числа, то число 4)Рр =2р-1 (2р -1)=2р-1 Мр является совершенным.
Действительно, делителями такого числа, включая само это число, являются 5)1,2, ... ,2р-1 ,Мр ,2Мр , ... ,2р-1 Мр .
Их сумма Sp =(1+2+ ... +2р-1 )(Мр +1) =(2 р -1) . 2 р = 2 . 2р-1 Мр . Вычитая из S само число Рр , убеждаемся, что сумма всех делителей числа Рр равна этому числу, следовательно Рр - совершенное число.
Числа Р2 =6 и Р3 =28 были известны ещё пифагорейцам. Числа Р5 =496 и Р7 =8128 нашел Евклид. Используя другие простые числа Мерсенна и формулу 4, находим следующие совершенные числа:
6)Р13 =33550336, Р17 =8589869056, Р19 =137438691328,Р31 =2305843008139952128.
Для всех остальных чисел Мерсенна числа Рр имеют очень много цифр.
До сих пор остаётся загадкой, как Мерсенн смог высказать правильное утверждение, что числа Р17, Р19, Р31 являются совершенными. Позднее было обнаружено, что почти за сто лет до Мерсенна числа Р17, Р19 нашел итальянский математик Катальди - профессор университетов Флоренции и Болоньи. Считалось, что божественное провидение предсказало своим избранникам правильные значения этих совершенных чисел. Если учесть, что ещё пифагорейцы считали первое совершенное число 6 символом души, что второе совершенное число 28 соответствовало числу членов многих учёных обществ, что даже в двенадцатом веке церковь учила: для спасения души достаточно изучать совершенные числа и тому, кто найдёт новое божественное совершенное число, уготовано вечное блаженство, то становится понятным исключительный интерес к этим числам.
Однако и с математической точки зрения чётные совершенные числа по-своему уникальны.Все они - треугольные. Сумма величин, обратных всем дилителям числа, включая само число, всегда равна двум. Остаток от деления совершенного числа, кроме 6, на 9 равен 1. В двоичной системе совершенное число Рр начинается р единицами, потом следуют р-1 нулей. Например:
7)Р2 = 110, Р3 = 11100, Р5 = 111110000, Р7 =1111111000000 и т.д.
Последняя цифра чётного совершенного числа или 6, или 8, причём, если 8, то ей предшествует 2.
Леонард Эйлер доказал, что все чётные совершенные числа имеют вид 2р-1 . Мр , где Мр -простое число Мерсенна. Однако до сих пор не найдено ни одного нечётного совершенного числа. Высказано предположение(Брайен Такхерман,США), что если такое число существует, то оно должно иметь не менее 36 знаков.
Похожие работы
-
Физическое доказательство малой теоремы Ферма
Простые числа играют важную роль в теории чисел. Используя свойства симметрии спиновых конфигураций Изинга, можно доказать малую теорему Ферма о простых числах и обобщить её на некоторые составные числа. Используемый в статье метод доказательства приводит к «физической» интерпретации простых чисел.
-
Малая теорема Ферма
Ма?лая теоре?ма Ферма? — классическая теорема теории чисел.
-
Представление чисел в виде суммы двух квадратов и ...
Министерство общего и профессионального образования Российской Федерации !!!!!!!!!!!!!!!! Государственный университет Имени Ярослава Мудрого.
-
Пафнутий Львович Чебышев
Корнет казачьего полка Лев Павлович Чебышев и его супруга дали своему первому сыну, родившемуся 26 мая 1821 года в селе Окатово Калужской губернии, редкое имя Пафнутия. О детстве Пафнутия Львовича – великого русского математика мы знаем очень мало. Грамоте его обучала мама, а французкому и арифметике – двоюродная сестра.
-
Жозеф Луи Лагранж
Лагранж, Жозеф Луи (Lagrange, Joseph Louis) (1736–1813), французский математик и механик.
-
Доказательство Великой теоремы Ферма методами элементарной алгебры
Доказательство теоремы Ферма методами элементарной алгебры Бобров А.В. г. Москва Контактный телефон – 8 (495)193-42-34 [email protected] В теореме Ферма утверждается, что равенство
-
Доказательство великой теоремы Ферма
Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.
-
Доказательство бесконечности некоторых видов простых чисел
Способ доказательства бесконечности количества некоторых видов простых чисел Греческий ученый Евклид еще в ІІІ веке до нашей еры доказал, что количество простых чисел - бесконечено.
-
Математическое выражение музыки
Настоящая наука и настоящая музыка требуют однородного мыслительного процесса - А. Эйнштейн.
-
Краткое доказательство великой теоремы Ферма
Теорема Ферма, ее формулировка и доказательство в случаях, если показатель степени n - нечетное число и если n - четное число. Теорема о единственности факторизации. Дополнительные обоснования теоремы. Состав наибольшего составного числового множителя.