Название: Доказательство Великой теоремы Ферма методами элементарной алгебры
Вид работы: статья
Рубрика: Математика
Размер файла: 91.85 Kb
Скачать файл: referat.me-216085.docx
Краткое описание работы: Доказательство теоремы Ферма методами элементарной алгебры Бобров А.В. г. Москва Контактный телефон – 8 (495)193-42-34 [email protected] В теореме Ферма утверждается, что равенство
Доказательство Великой теоремы Ферма методами элементарной алгебры
Доказательство теоремы Ферма методами элементарной алгебры
Бобров А.В.
г. Москва
Контактный телефон – 8 (495)193-42-34
В теореме Ферма утверждается, что равенство для натуральных
и
может иметь место только для целых
.
Рассмотрим равенство
, (1)
где и
- натуральные взаимно простые числа, то есть числа, не имеющие общих целых множителей, кроме 1
. В этом случае два числа всегда нечетные. Пусть
- нечетное число,
и
- натуральные числа. Для всякого действительного положительного числа выполнима операция нахождения арифметического значения корня, то есть равенство (1) можно записать в виде:
, (2)
где и
- действительные положительные множители числа
В соответствии со свойствами показательной функции, для любого
из действительных положительных чисел и
существуют единственные значения чисел
, удовлетворяющие равенствам
, (3)
Из равенств (2) и (3) следует:
,
. (4)
Поскольку p
>
q
,
всегда имеет место p
-
q
=
k
, или а
p
= а
k∙
×а
q
,
то есть числа и
содержат общий множитель
, что противоречит условию их взаимной простоты. Это условие выполнимо только при
, то есть при
. Тогда равенства (4) принимают вид:
,
(5)
откуда следует
, (6)
то есть для взаимно простых и
числа
и
всегда являются двумя последовательными целыми числами. Еще Эвклидом доказано, что всякое нечетное число выражается, как разность квадратов двух последовательных целых чисел, то есть равенство (1) для натуральных взаимно простых
и
может быть выражено только в виде равенства
. (7)
Справедливость приведенного доказательства можно проиллюстрировать следующим примером.
Пусть в равенстве Ферма числа и
– целые взаимно простые,
– четное. Тогда числа
,
, их сумма
иразность
- также целые, показатель степени p
>
q
.
Целые числа и
являются взаимно простыми, если не содержат общих целых множителей, кроме 1. Это условие выполнимо только тогда, когда общий целый множитель , то есть
,
.
Тогда разность , что для одновременно целых
и
может иметь место
только при
, то есть при
или
, что и позволило Пьеру де Ферма сделать почти 370 лет назад свою запись на полях арифметики Диофанта.
Похожие работы
-
Доказательство Великой теоремы Ферма для степени n 3 2
Файл: FERMA-n3-new © Н. М. Козий, 2009 Украина, АС № 28607 ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ПОКАЗАТЕЛЯ СТЕПЕНИ n=3 Великая теорема Ферма формулируется следующим образом: диофантово уравнение:
-
Доказательство Великой теоремы Ферма с помощью Малой теоремы
Файл: FERMA-PR-ABCfor © Н. М. Козий, 2009 Авторские права защищены свидетельством Украины 28607 ДОКАЗАТЕЛЬСТВО BЕЛИКОЙ ТЕОРЕМЫ ФЕРМА C ПОМОЩЬЮ МАЛОЙ ТЕОРЕМЫ ФЕРМА
-
Доказательство великой теоремы Ферма 5
Файл: FERMA-forum © Н. М. Козий, 2009 Авторские права защищены свидетельством Украины 29316 ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА Оригинальный метод
-
Простое доказательство великой теоремы Ферма
Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.
-
Доказательство Великой теоремы Ферма для степени n 3
Файл: FERMA-n3-algo © Н. М. Козий, 2009 Украина, АС № 28607 ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ПОКАЗАТЕЛЯ СТЕПЕНИ n=3 Великая теорема Ферма для показателя степени n=3 формулируется следующим образом: диофантово уравнение:
-
Доказательство великой теоремы Ферма для четных показателей степени
Решение уравнения теоремы Пифагора в целых числах. Доказательство теоремы Ферма в целых положительных числах при четных показателях степени. Применение методов решения параметрических уравнений и замены переменных. Доказательство теоремы Пифагора.
-
Доказательство великой теоремы Ферма
Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.
-
Доказательство великой теоремы Ферма
Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.
-
Доказательство теоремы Ферма для n=4
Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.
-
Краткое доказательство великой теоремы Ферма
Теорема Ферма, ее формулировка и доказательство в случаях, если показатель степени n - нечетное число и если n - четное число. Теорема о единственности факторизации. Дополнительные обоснования теоремы. Состав наибольшего составного числового множителя.