Referat.me

Название: Уравнение Лапласа и гармонические функции

Вид работы: реферат

Рубрика: Математика

Размер файла: 160.18 Kb

Скачать файл: referat.me-218348.docx

Краткое описание работы: УРАВНЕНИЕ ЛАПЛАСА И ГАРМОНИЧЕСКИЕ ФУНКЦИИ Основные понятия Мы начнем с самого простого и важного из эллиптиче­ских уравнений, а именно с уравнения Лапласа.

Уравнение Лапласа и гармонические функции

УРАВНЕНИЕ ЛАПЛАСА И ГАРМОНИЧЕСКИЕ ФУНКЦИИ

Основные понятия

Мы начнем с самого простого и важного из эллиптиче­ских уравнений, а именно с уравнения Лапласа. Это урав­нение имеет вид

- ∆ u = f ( x )

Здесь f ( x ) — заданная функция. Если f ( x )≠0 , то уравне­ние (1) называется неоднородным уравнением Лапласа. При f ( x ) = 0 имеем однородное уравнение Лапласа

u = 0

Неоднородное уравнение Лапласа часто называют уравнением Пуассона.

В более подробной записи уравнения Лапласа — неодно­родное и однородное — выглядят так:

и соответственно

Рассмотрим некоторую замкнутую поверхность Г, не обязательно связную» и пусть Г ограничивает область Ω, конечную (рис. 1) или бесконечную (рис.2) В обоих слу­чаях предполагается» что сама поверхность Г конечна. Будемизучать поведение решений однородного уравнения Лапласа в подобных областях.

Функция и (х) называется гармонической в конечной области Ω, если она в этой области дважды непрерывно дифференцируема и удовлетворяет однородному уравнению Лапласа.

Будем говорить, что функция и(х) гармоническая в бес­конечной области Ω, если в каждой точке этой области, находящейся на конечном расстоянии or начала, u ( x ) дважды непрерывно дифференцируема, удовлетворяйi однородному уравнению Лапласа и па бесконечности имеет порядок

,так что для достаточно больших |х| имеет место неравенство

где т — размерность пространства, а С — некоторая постоян­ная. В случае двумерной области (т = 2) условие (3) озна­чает, что гармоническая в бесконечной области функция ограничена на бесконечности.

Подчеркнем, что определение гармонической функции отно­сится только к случаю открытой области (т. е. открытого связного множества); если говорят о функции, гармонической в замкнутой области, то под этим понимают, что данная функция гармонична в более широкой открытой области.

Заметим еще, что определение гармонической функции не накладывает никаких ограничений на поведение функции на границе области.

Пример 1: Если Ω — бесконечная область, то функция и (х) = 1 гармоническая только при т = 2. Если m > 2 , то в бесконечной области эта функции негармонична. Однако она гар­монична в любой конечной области при любом т.

Пример 2. В двумерной плоскости функция

где z = х+ i у , гармонична в любой области, которая не содержит начала координат.

Пример 3. Функция z = x + iy , гармонична в круге | z | < R ( R — любое положительное число), разрезанном вдоль какого-либо из его радиусов.

Пример 4. Функция двух переменных и = х2 + у2 не являет­ся гармонической ни в какой области, так как она не удовлетво­ряет однородному уравнению Лапласа

∆( x 2 + y 2 ) = 4 ≠ 0.

Пример 5. Функция u = x 2 - y 2 гармонична в любой конеч­ной области.

На двумерной плоскости конформное преобразование не меняет однородного уравнения Лапласа. В случае любого т это не так, но все же существует преобразование, которое перево­дит любую гармоническую функцию в гармоническую же. Это пре образование Кельвина, которое переводит точку

х (хи х2 , ... , хт ) в точку х’ (х’и х’2 , ... , х’т ) , симметричную с точкой х относительно сферы данного радиуса R с центром в начале координат, а дан ную функцию и (х) переводит в функцию

Напомним, что точки х и х' называются симметричными относительно названной выше сферы, если они лежат на одном луче, исходящем из начала, и если | х | • | х'| = R 2 . Декартовы коор­динаты симметричных точек связаны соотношением

Простой, хотя и довольно громоздкий подсчет приводит к соотношению

поэтому если то .

Похожие работы

  • Теорема Лапласа

    Теоре?ма Лапла?са — одна из теорем линейной алгебры. Названа в честь французского математика Пьера-Симона Лапласа (1749 — 1827), которому приписывают формулирование этой теоремы в 1772 году.

  • Прямое дискретное преобразование Лапласа

    Предмет: Теория Автоматического Управления Тема: ПРЯМОЕ ДИСКРЕТНОЕ ПРЕОБРАЗОВАНИЕ ЛАПЛАСА Введение Динамические процессы в дискретных системах управления описываются уравнениями в конечных разностях. Удобным методом для решения разностных уравнений является операционный метод, основанный на дискретном преобразовании Лапласа.

  • Теория вероятностей

    Общее решение дифференциального уравнения первого порядка. Уравнение с разделенными переменными. Выбор частного интеграла. Частное решение дифференциального уравнения второго порядка. Вероятность проявления события, интегральная формула Муавра-Лапласа.

  • Гармонические колебания

    Колебаниями называются движения или процессы, которые характеризуются определённой повторяемостью во времени.

  • Дифференцированные уравнения

    1.ВВЕДЕНИЕ 2.ОСНОВНЫЕ ПОНЯТИЯ 2.1.ЗАПИСЬ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В СТАНДАРТНОЙ И ОПЕРАТОРНОЙ ФОРМЕ В теории автоматического регулирования в настоящее время принято записывать дифференциальные уравнения в двух формах.

  • Происхождение Солнечной системы

    Вот уже два века проблема происхождения Солнечной системы волнует выдающихся мыслителей нашей планеты. Этой проблемой занимались, начиная от философа Канта и математика Лапласа, плеяда астрономов и физиков XIX и XX столетий.

  • Дифференциальные уравнения для электрической цепи

    Министерство Образования Российской Федерации ИрГТУ Кафедра АПП Курсовая работа по математике Выполнил: студент группы АТП-05-1 Поверил: профессор

  • Теория вероятности и математическая статистика

    Классическое определение вероятности события. Способы вычисления наступления предполагаемого события. Построение многоугольника распределения. Поиск случайных величин с заданной плотностью распределения. Решение задач, связанных с темой вероятности.

  • Решение задачи Дирихле для уравнения Лапласа методом сеток

    ПОСТАНОВКА ЗАДАЧИ Решить численно задачу Дирихле для уравнения Лапласа : (x,y)D ; u|Г=xy2=f(x,y) ; область D ограничена линиями: x=2 , x=4 , y=x , y=x+4 ;

  • Формула Лапласа. Математическое ожидание

    Задача на определение вероятности попадания при одном выстреле первым орудием, при условии, что для второго орудия эта вероятность равна 0,75. Интегральная формула Лапласа. Решение задачи на определение математического ожидания случайной величины.