Название: Теория вероятности
Вид работы: контрольная работа
Рубрика: Математика
Размер файла: 85.36 Kb
Скачать файл: referat.me-217779.docx
Краткое описание работы: Определение числа исходов, благоприятствующих данному событию. Теорема умножения вероятностей и сложения несовместных событий, локальная теорема Лапласа. Расчет среднеквадратического отклонения величин. Несмещенная оценка генеральной средней и дисперсии.
Теория вероятности
КОНТРОЛЬНАЯ РАБОТА
на тему «Теория вероятности »
по предмету «Математика»
Задание 1
Общее число возможных элементарных методов равно числу сочетаний из 10 по 5:
.
Подсчитываем число исходов, благоприятствующих нашему событию. Среди 3-х женщин две женщины могут быть выбраны способами; при этом остальные 5–2=3 людей должны быть мужчинами. Взять же 3 мужчины из 7 можно
способами. Следовательно, число исходов благоприятствующих нашему событию:
.
Искомая вероятность равна:
.
Задание 2
.
Возможны следующие три случая:
А – среди трех студентов посетивших библиотеку первый заказал учебник по теории вероятностей, а два других не заказали;
В – второй студент заказал учебник по теории вероятностей, а первый и второй нет.
Вероятность каждого из этих событий по теореме умножения равны:
;
;
.
Искомая вероятность по теореме сложения несовместных событий:
.
Поэтому: .
Чтобы нити оказались одного цвета должны выполниться следующие события:
А – вынуть две нити красного цвета;
В – вынуть две нити белого цвета.
Вероятность каждого из этих событий по теореме умножения вероятностей будут:
;
.
Искомая вероятность по теореме сложения вероятностей: .
Задание 3
.
I – 4б; 6кр; II – 5б; 10кр
Обозначим события А – выбранный шар белый. Можно сделать два предложения:
– белый шар выбран из 1-го ящика
– белый шар выбран из 2-го ящика, так как ящик выбирают на удачу, то:
.
Условная вероятность того, что шар будет белым и извлечен он из первого ящика будет:
.
Вероятность того, что белый шар будет извлечен из второго ящика:
.
Формула полной вероятности:
.
Тогда вероятность того, что наугад взятый шар будет белым:
.
Задание 4
Воспользуемся локальной теоремой Лапласа:
;
;
.
В нашем случае n=600; k=25; P=0,05; q=0,95.
.
Так как функция – четная, то по таблице находим:
.
Тогда .
Задание 5
x | 20 | 25 | 30 | 35 | 40 |
P | 0,2 | 0,3 | 0,2 | 0,1 | 0,2 |
.
;
;
;
.
Начальный момент первого порядка: .
Аналогично: .
.
Находим центральные моменты по формулам:
;
;
.
Следовательно:
;
;
.
Многоугольник распределения
Задание 6
Распределение Х и распределение Y
Xi | 4 | 9 | 12 | Yi | 6 | 7 |
Pi | 0,36 | 0,24 | 0,4 | Pi | 0,65 | 0,35 |
;
.
;
;
;
;
;
.
Коэффициент коррекции находим по формуле:
,
где: Kxy
– корелляционный момент связи случайных величин X и Y; – среднеквадратические отклонения величин X и Y.
.
Тогда:
;
;
.
.
Задание 7
;
.
;
.
Задание 8
Распределение Х и распределение Y
Xi | 1 | 3 | 5 | Yi | 12 | 13 | 15 |
Pi | 0,1 | 0,7 | 0,2 | Pi | 0,5 | 0,1 | 0,4 |
x1 =1; x2 =3; x3 =5; y1 =12; y2 =13; y3 =15; x1 + y1 =13; x1 + y2 =14; x1 + y3 =16;
x2 + y1 =15; x2 + y2 =16; x2 + y3 =18; x3 + y1 =17; x3 + y2 =18; x3 + y3 =20;
Обозначим xi + yj =7, тогда имеем следующие значения z:
z1 =13; z2 =14; z3 =15; z4 =16; z5 =17; z6 =18; z7 =20.
Соответствующие вероятности будут:
;
;
;
;
;
;
.
Искомое распределение
x+y | 13 | 14 | 15 | 16 | 17 | 18 | 20 |
P | 0,04 | 0,06 | 0,12 | 0,28 | 0,04 | 0,36 | 0,10 |
Контроль:
0,04+0,06+0,12+0,28+0,04+0,36+0,1=1.
Задание 9
Xi | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 |
ni | 1 | 2 | 3 | 4 | 5 | 10 | 6 | 5 |
Находим значение эмпирической функции.
Вычисления выполняем в таблице.
Таблица вычислений
Xi | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 |
Частота![]() |
0,028 | 0,056 | 0,083 | 0,111 | 0,139 | 0,278 | 0,166 | 0,139 |
![]() |
0,028 | 0,084 | 0,167 | 0,278 | 0,417 | 0,695 | 0,861 | 1,00 |
График эмпирической функции
Несмещенной оценкой генеральной средней является выборочная средняя:
.
Тогда:
.
Несмещенную оценку генеральной дисперсии найдем по формуле:
Последовательно находим:
;
;
;
.
Модой называют варианту, имеющую наибольшую частоту.
.
Медиана:
.
Размах варьирования:
R=16–2=14.
Из соотношения находим
и t=1,96.
Находим точность оценки по формуле:
.
Тогда:
.
Доверительный интервал таков: ().
Похожие работы
-
Расчет математического ожидания и дисперсии
Определение математической вероятности правильного набора, если на нечетных местах комбинации стоят одинаковые цифры. Использование классического определения вероятности. Расчет математического ожидания и дисперсии для очков, выпавших на игральных костях.
-
Шпаргалка по Теории Вероятности
1) свойство вероятности: 20 стр. Свойство 1. Вероятность невозможного события равна 0, т.е. Свойство 2. Вероятность достоверного события равна 1, т.е.
-
Основы математики
Задание № 1 В урне 5 белых и 4 черных шара. Из нее вынимают подряд два ряда шара. Найти вероятность того, что оба шара белые. Решение: Всего возможно . (это общее количество возможных элементарных исходов испытания). Интересующая нас событие заключается в том, что данная выборка содержит 2 белых шара, подсчитаем число благоприятствующих этому событию вариантов:
-
Основы теории вероятностей
Принципы решения задач по основным разделам теории вероятностей: случайные события и их допустимость, непроизвольные величины, распределения и числовые характеристики градировки, основные предельные теоремы для сумм независимых вероятностных величин.
-
Теория вероятностей
Основы комбинаторики. Комбинаторика это раздел математики в котором изучается вопрос о том сколько различных комбинаций подчиненных тем или иным условиям можно составить из конечного числа различных элементов.
-
Теорема сложения вероятностей. Закон равномерной плотности вероятностей
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ТВЕРСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра: «____________________________________________»
-
Методика обработки экспериментальных данных 2
Задание на курсовую работу Построить вариационный ряд Рассчитать числовые характеристики статистического ряда: а) Размах варьирования. б) Среднее арифметическое значение.
-
Разложение функций. Теория вероятностей
Функциональные и степенные ряды. Разложение функций в ряды Тейлора и Макларена. Теорема Дерихле. Основные понятия в теории вероятностей. Теорема умножения и сложения вероятностей независимых событий. Формулы Бейеса, Бернулли. Локальная теорема Лапласа.
-
Математическая статистика
Исследование сходимости рядов. Степенной ряд интеграла дифференциального уравнения. Определение вероятности событий, закона распределения случайной величины, математического ожидания, эмпирической функции распределения, выборочного уравнения регрессии.
-
Основы теории вероятностей
Закон распределения случайной величины Х, функция распределения и формулы основных числовых характеристик: математическое ожидание, дисперсия и среднеквадратичное отклонение. Построение полигона частот и составление эмпирической функции распределения.