Название: Основы теории вероятностей
Вид работы: контрольная работа
Рубрика: Математика
Размер файла: 36.62 Kb
Скачать файл: referat.me-215150.docx
Краткое описание работы: Закон распределения случайной величины Х, функция распределения и формулы основных числовых характеристик: математическое ожидание, дисперсия и среднеквадратичное отклонение. Построение полигона частот и составление эмпирической функции распределения.
Основы теории вероятностей
Вариант 2
1. Решите уравнение
Решение:
По определению .
Тогда и уравнение принимает вид
откуда получаем
.
Ответ:
.
2. В урне находится 7 белых и 5 черных шаров. Найти вероятность того, что два одновременно изъятых шара будут белыми.
Решение:
Изначально в урне 12 шаров и вероятность извлечь первый шар белый составляет . После того как извлечен первый белый шар в урне остается 11 шаров, из них 6 белых, следовательно вероятность извлечь второй белый шар составит
.
В итоге вероятность совместного появления двух белых шаров равна:
Ответ:
.
3. В ящике 10 деталей, из которых 4 стандартные. Контролер взял наудачу 3 детали. Найти вероятность того, что хотя бы одна из изъятых деталей окажется стандартной.
Решение:
События «хотя бы одна стандартная» и «все детали не стандартные» противоположны и сумма их вероятностей равна 1.
Найдем вероятность того, что 3 извлеченных детали не стандартные.
Общее число возможных элементарных исходов выбора 3-х деталей из 10 равно числу сочетаний из 10 элементов по 3: , где
, тогда
Определим число исходов, благоприятствующих интересующему нас событию А (среди 3-х выбранных деталей 3 не стандартных). Три детали из 6 имеющихся можно выбрать способами следовательно, число благоприятствующих исходов
.
Искомая вероятность равна отношению числа исходов, благоприятствующих нужному событию, к числу всех элементарных исходов: .
Тогда искомая вероятность того, что хотя бы одна из изъятых деталей окажется стандартной равна:
Ответ:
.
4. В коробке 7 карандашей, из которых 4 красные. Из этой коробки наудачу извлекается 3 карандаша. Х – число красных карандашей. Найти закон распределения случайной величины Х, функцию распределения и основные числовые характеристики.
Решение:
Среди 3-х извлеченных карандашей может быть 0, 1, 2 или 3 красных.
Найдем вероятность каждого исхода.
0 красных:
1 красный:
2 красных:
3 красных:
Закон распределения принимает вид:
Х | 0 | 1 | 2 | 3 |
р | ![]() |
![]() |
![]() |
![]() |
Запишем функцию распределения полученной случайной величины Х:
Математическое ожидание М(Х) дискретной случайной величины находится по формуле:
,
и подставляя данные получим:
Дисперсию дискретной случайной величины можно вычислить по формуле:
,
и, подставляя данные, получим:
Среднеквадратичное отклонение: s(Х)=
Ответ:
;
;
5. По данной выборке постройте полигон. Найти эмпирическую функцию.
Хi | 4 | 7 | 8 |
Ni | 5 | 2 | 3 |
Решение:
Построим полигон частот – ломаную, соединяющую точки с координатами (Хi; Ni).
Объем выборки равен N = 5 + 2 + 3 = 10.
Найдем относительные частоты и составим эмпирическую функцию распределения:
Хi | 4 | 7 | 8 |
wi | 0,5 | 0,2 | 0,3 |
Ответ: решение выше.
Похожие работы
-
Шпаргалка по Теории Вероятности
1) свойство вероятности: 20 стр. Свойство 1. Вероятность невозможного события равна 0, т.е. Свойство 2. Вероятность достоверного события равна 1, т.е.
-
Ряд распределения функция распределения
Задача 1 (5) Производится контроль партии из 4 изделий. Вероятность изделия быть неисправным равна 0,1. Контроль прекращается при обнаружении первого неисправного изделия. Х – число обследованных приборов. Найти:а) ряд распределения Х б)функцию распределения F(X), в ответ ввести F(3.5). в) m(x) г) d(x) д) p(1.5<X<3.5).
-
Задачи и примеры их решения по теории вероятности
Вариант 3. 1. Решите уравнение Решение По определению Тогда и уравнение принимает вид откуда получаем Так как m может быть только натуральным числом, то значение
-
Основы математики
Задание № 1 В урне 5 белых и 4 черных шара. Из нее вынимают подряд два ряда шара. Найти вероятность того, что оба шара белые. Решение: Всего возможно . (это общее количество возможных элементарных исходов испытания). Интересующая нас событие заключается в том, что данная выборка содержит 2 белых шара, подсчитаем число благоприятствующих этому событию вариантов:
-
Вариационные ряды
Задание № 1. По данной выборке: а) Найти вариационный ряд; б) Построить функцию распределения; в) Построить полигон частот; г) Вычислить среднее значение СВ, дисперсию, среднеквадратичное отклонение.
-
Методика обработки экспериментальных данных 2
Задание на курсовую работу Построить вариационный ряд Рассчитать числовые характеристики статистического ряда: а) Размах варьирования. б) Среднее арифметическое значение.
-
Теория вероятности и математическая статистика
Особенности выполнения теоремы Бернулли на примере электрической схемы. Моделирование случайной величины по закону распределения Пуассона, заполнение массива. Теория вероятности, понятие ожидания, дисперсии случайной величины и закон распределения.
-
Исследование прочности на разрыв полосок ситца
Задачи математической статистики. Распределение случайной величины на основе опытных данных. Эмпирическая функция распределения. Статистические оценки параметров распределения. Нормальный закон распределения случайной величины, проверка гипотезы.
-
Задачи по Математике
ЗАДАЧИ КОНТРОЛЬНОЙ РАБОТЫ Задачи № 1-10. Решить систему линейных алгебраических уравнений тремя способами: 1) методом Крамера, 2) с помощью обратной матрицы, 3) методом Гаусса.
-
Вычисление случайных величин
Задача №1. Двумерная случайная величина (X,Y) имеет равномерное распределение вероятностей в треугольной области ABC: где S – площадь треугольника ABC.