Referat.me

Название: Преобразование графиков функции

Вид работы: реферат

Рубрика: Математика

Размер файла: 2.41 Mb

Скачать файл: referat.me-218336.pptx

Краткое описание работы: Тема: « Преобразование графиков функции Цели: 1) Систематизировать приемы построения графиков. 2) Показать их применение при построении: а) графиков сложных функций;

Преобразование графиков функции

Тема: « Преобразование графиков функции »

Цели:

1) Систематизировать приемы построения графиков.

2) Показать их применение при построении:

а) графиков сложных функций;

б) при решении заданий ЕГЭ из части C.

Рассмотрим основные правила преобразования графиков на примерах элементарных функций

1) Преобразование симметрии относительно оси x
f(x)
-f(x)

График функции y=-f(x) получается преобразованием симметрии графика функции y=f(x) относительно оси x.

Замечание. Точки пересечения графика с осью x остаются неиз мен ными.

2) Преобразование симметрии относительно оси y
f(x)
f( - x)

График функции y=f(-x) получается преобразованием симметрии графика функции y=f(x) относительно оси y.

Замечание. Точка пересечения графика с осью y остается неизменной.

3) Параллельный перенос вдоль оси x
f(x) f(x-a)

График функции y=f(x-a) получается параллельным переносом графика функции y=f(x) вдоль оси x на |a| вправо при a>0 и влево при a<0.

4) Параллельный перенос вдоль оси y
f(x)
f(x)+b

График функции y=f(x)+b получается параллельным переносом графика функции y=f(x) вдоль оси y на |b| вверх при b>0 и вниз при b<0.

5) Сжатие и растяжение вдоль оси x
f(x) f( x), где >0

>1 График функции y=а(x) получается сжатием графика функции y=f(x) вдоль оси x в  раз.

6) Сжатие и растяжение вдоль оси y
f(x) kf(x), где k>0

k>1 График функции y=kf(x) получается растяжением графика функции y=f(x) вдоль оси y в k раз.

7) Построение графика функции y=|f(x)|

Части графика функции y=f(x), лежащие выше оси x и на оси x, остаются без изменения, а лежащие ниже оси x – симметрично отображаются относительно этой оси (вверх).

Замечание. Функция y=|f(x)| неотрицательна (ее график расположен в верхней полуплоскости).

8) Построение графика функции y=f(|x|)

Часть графика функции y=f(x), лежащая левее оси y, удаляется, а часть, лежащая правее оси y – остается без изменения и, кроме того, симметрично отражается относительно оси y (влево). Точка графика лежащая на оси y, остается неизменной.

Замечание. Функция y=f(|x|) четная (ее график симметричен относительно оси y).

9) Построение графика обратной функции

График функции y=g (x), обратной функции y=f(x), можно получить преобразованием симметрии графика функции y=f(x) относительно прямой y=x.

Замечание. Описанное построение производить только для функции, имеющей обратную.

Построение графиков сложных функций с помощью последовательных преобразований графиков элементарных функций (на примерах)

Построение графиков сложных функций с помощью последовательных преобразований графиков элементарных функций (на примерах)

Построение графиков сложных функций с помощью последовательных преобразований графиков элементарных функций (на примерах)

Построение графиков сложных функций с помощью последовательных преобразований графиков элементарных функций (на примерах)

Применение правил преобразования графиков при решении заданий ЕГЭ
(части C).

Решить систему уравнений:

В одной системе координат, построим графики функций: а)

Решить уравнение: f(g(x))+g(f(x))=32 , если известно, что и

Решение : Преобразуем функцию f(x).

Так как , то

Тогда g(f(x))=20.

Подставим в уравнение f(g(x))+g(f(x))=32, получим f(g(x))+20=32;

f(g(x))=12

Пусть g(x)=t, тогда f(t)=12 или

а)

График данной функции получается построением графика

В системе x’o’y’, где o’(1;0).

б)

В системе x”o”y”, где o”(6;4), построим график функции

Вывод:

Мы видим, что правила преобразования графиков существенно упрощают построение графиков сложных функций.

Помогают найти нетрадиционное решение сложных задач.

Тема: « Преобразование графиков функции »


Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции
Преобразование графиков функции

Похожие работы

  • Геометрические преобразования графиков функции

    Функция Преобразование Графики y = −ѓ(x) Сначала строим график функции ѓ(x), а затем симметрично отображаем его относительно оси OX. − (x2)

  • Прямое дискретное преобразование Лапласа

    Предмет: Теория Автоматического Управления Тема: ПРЯМОЕ ДИСКРЕТНОЕ ПРЕОБРАЗОВАНИЕ ЛАПЛАСА Введение Динамические процессы в дискретных системах управления описываются уравнениями в конечных разностях. Удобным методом для решения разностных уравнений является операционный метод, основанный на дискретном преобразовании Лапласа.

  • Графическое решение уравнений

    График функции как множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов, а ординаты – соответствующим значениям функции. Исследование графиков функций и графическое решение уравнений, их разновидности и особенности.

  • Математическое моделирование

    Математическое моделирование экономических параметров: определение вида и параметров функций спроса, затрат и производственной функции выпуска.

  • Антье и ее окружение

    Антье и ее свойства. Графики антье.

  • Использование графического метода при изучении электрического резонанса в курсе физики средней

    Использование графического метода при изучении электрического резонанса в курсе физики средней школы Цыкун В.Ф., учитель физики сш. №30, г. Хабаровска, Щербаков Н.Г., к.п.н., доцент кафедры общей физики ХГПУ

  • Функционально-графический подход к решению задач с параметрами

    Выполнение алгебраических преобразований, логическая культура и техника исследования. Основные типы задач с параметрами, нахождение количества решений в зависимости от значения параметра. Основные методы решения задач, методы построения графиков функций.

  • Применение графиков в решении уравнений

    Графическое решение квадратного уравнения. Системы уравнений. Тригонометрические уравнения. Тригонометрические неравенства.

  • Геометрические преобразования графиков функции

    Построение графиков функций F(x), симметричное их отбражение относительно оси координат ОХ, ОУ, при значениях -F, -x. Особенности построения графиков функций и симметричное отображение относительно осей координат: f(x)+A; f(x+а); kf(x); |f(x)|; |f(|x|)|.

  • График

    Связи между алгеброй и геометрией были известны еще древним математикам. Например, длина отрезка выражается числом, а ведь отрезок — геометрическая фигура, тогда как числа изучаются в алгебре.