Название: Исследования движения тел в диссипативной среде
Вид работы: лабораторная работа
Рубрика: Физика
Размер файла: 43.15 Kb
Скачать файл: referat.me-341930.docx
Краткое описание работы: Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» кафедра физики ИССЛЕДОВАНИЕ ДВИЖЕНИЯ ТЕЛ В ДИССИПАТИВНОЙ СРЕДЕ Лабораторная работа № 1
Исследования движения тел в диссипативной среде
Санкт-Петербургский государственный
электротехнический университет
«ЛЭТИ»
кафедра физики
ИССЛЕДОВАНИЕ
ДВИЖЕНИЯ ТЕЛ В ДИССИПАТИВНОЙ СРЕДЕ
Лабораторная работа № 1
Санкт-Петербург, 2004
РАБОТА 1
ИССЛЕДОВАНИЕ ДВИЖЕНИЯ ТЕЛ В ДИССИПАТИВНОЙ СРЕДЕ
Цель работы : Исследование процессов рассеяния энергии в диссипативной системе на примере измерения скорости движения тела в жидкой среде, определение основных характеристик диссипативной системы.
Приборы и принадлежности : цилиндрический сосуд с жидкостью, металлические шарики, аналитические весы, масштабная линейка, секундомер.
В работе используется цилиндрический сосуд (рис. 1), на котором нанесены метки. Измеряя расстояние между метками и время падения шарика в жидкости, можно определить скорость его падения. Шарик опускается в жидкость через впускной патрубок, расположенный в крышке цилиндра.
Исследуемые закономерности
Сила сопротивления движению в вязкой среде. В вязкой среде на движущееся тело действует сила сопротивления, направленная против скорости тела. При небольших скоростях (существенно меньших скорости распространения звуковых волн в данной среде) эта сила обусловлена вязким трением между слоями среды и пропорциональна скорости тела
,
где v – скорость движения тела, r – коэффициент сопротивления, зависящий от формы, размеров тела и от вязкости среды h.
Для шара радиуса R
коэффициент сопротивления определяется формулой Стокса
.
При движении тела в вязкой среде происходит рассеяние (диссипация) его кинетической энергии. Слои жидкости, находящиеся на разном расстоянии от движущегося тела имеют различную скорость. Слой жидкости, находящийся в непосредственной близости от поверхности движущегося тела, имеет ту же скорость, что и тело, по мере удаления скорость частиц жидкости уменьшается. В этом состоит явление вязкого трения, в результате которого энергия тела передается слоям окружающей среды в направлении, перпендикулярном движению тела.
Движение тела в диссипативной среде. Движение тела массой m под действием постоянной силы F при наличии сопротивления среды описывается следующим уравнением:
.
В данной работе тело движется под действием силы тяжести, уменьшенной в результате действия выталкивающей силы Архимеда, т.е.
,
где rс и rт – плотности среды и тела, соответственно. Таким образом, уравнение движения преобразуется к виду
.
Если начальная скорость движения тела равна нулю, то равна нулю и сила сопротивления, поэтому начальное ускорение
.
С увеличением скорости сила сопротивления возрастает, ускорение уменьшается, обращаясь в нуль при равенстве движущей силы и силы сопротивления. Дальше тело движется равномерно с установившейся скоростью v ¥ (теоретически для достижения установившейся скорости требуется бесконечно большое время)
.
Аналитическое решение уравнения движения при нулевой начальной скорости выражается формулой
,
![]() |
где t - время релаксации. Соответствующая зависимость скорости движения тела в диссипативной среде от времени представлена на рис. 2.
Рис. 2
Время релаксации t можно определить различным образом. Например, из графика на рис. 2 следует, что если бы тело двигалось все время равноускоренно с ускорением, равным начальному ускорению a 0 , то оно достигло бы установившейся скорости за время, равное t.
Превращение энергии в диссипативной системе .
Полная энергия движущегося тела в произвольный момент времени определяется выражением
,
где h – высота расположения тела над дном сосуда. В установившемся режиме
.
Передача энергии жидкой среде, окружающей движущееся тело, происходит за счет совершения работы против сил трения. Энергия при этом превращается в тепло, идет процесс диссипации энергии. Скорость диссипации энергии (мощность потерь) в установившемся режиме
.
Учитывая, что m / t = r , получим уравнение баланса энергии на участке установившегося движения
.
Указания по выполнению наблюдений
- Масштабной линейкой измерить расстояние Dh между средней и нижней меткой на боковой поверхности сосуда.
- На аналитических весах взвесить поочередно 5 шариков, и записать массу каждого шарика в таблицу Протокола наблюдений.
- Поочередно опуская шарики в жидкость через впускной патрубок, измерить секундомером время прохождения каждым шариком расстояния между двумя метками на боковой поверхности сосуда. Результаты записать в таблицу Протокола наблюдений.
- На панели макета установки указаны значения плотности жидкости в сосуде и плотности материала шариков. Эти данные также следует записать в Протокол наблюдений.
Задание на подготовку к работе
- Выполните индивидуальное домашнее задание №2
- Изучите описание лабораторной работы.
- Выведите формулу для определения коэффициента сопротивления r , полагая что известно значение установившейся скорости v ¥ . Выведите также формулу погрешности Dr .
- Выведите формулу для определения коэффициента вязкости h на основе рассчитанного коэффициент сопротивления r , массы и плотности материала шариков.
- Подготовьте бланк Протокола наблюдений, основываясь на содержании раздела «Указания по проведению наблюдений». Разработайте и занесите в бланк Протокола наблюдений таблицу результатов наблюдений.
Задание по обработке результатов
- По данным таблицы результатов наблюдений определите значения установившихся скоростей шариков. Рассчитайте значения коэффициентов сопротивления r для каждого опыта и инструментальную погрешность полученных результатов.
- Определите коэффициент вязкости h исследуемой жидкости. Найдите его среднее значения и погрешность полученного результата.
- Промежуточные вычисления и окончательные результаты, полученные в п. 1, 2 сведите в таблицу.
- Для одного из опытов определите мощность рассеяния и проверьте баланс энергии на участке установившегося движения.
- Также для одного из опытов найдите время релаксации t, постройте графики скорости и ускорения от времени.
- Результаты, полученные в п. 3 и 4, следует округлить, основываясь на значениях погрешностей величин, рассчитанных ранее.
Контрольные вопросы
- Запишите уравнение движения для тела, движущегося в однородном силовом поле в диссипативной среде, и объясните физический смысл величин, входящих в это уравнение.
- Какие параметры характеризуют исследованную систему как диссипативную?
- Дайте определение времени затухания. Как определить время затухания, пользуясь графиком переходного процесса в диссипативной системе?
- От каких величин зависит коэффициент сопротивления движению в диссипативной среде?
Похожие работы
-
Электронные аналоговые вольтметры
Санкт-Петербургский Государственный Электротехнический Университет Отчет по лабораторной работе № 2 Электронные аналоговые вольтметры Выполнили: Балканов К.М.
-
Фотогальванометрический веберметр
Санкт-Петербургский государственный электротехнический университет “ ЛЭТИ” Кафедра ИИСТ Курсовой проект на тему Фотогальванометрический веберметр
-
Лабораторная работа №5 Исследование электрической цепи источника постоянного тока
Министерство Российской Федерации Санкт-Петербургский государственный горный институт (технический университет) им. Г.В. Плеханова Кафедра физики
-
Исследование движения тел в диссипативной среде 2
Министерство Образования РФ Санкт-Петербург Государственный Электротехнический Университет “ЛЭТИ” Кафедра физики Исследование движения тел в диссипативной среде
-
Исследование движения тел в диссипативной среде
Исследования движения тел в диссипативной среде Приборы и принадлежности: сосуд с исследуемой жидкостью, шарики большой плотности, чем плотность жидкости, секундомер, масштабная линейка.
-
Динамический режим средств измерений
Лабораторная работа №6 «Динамический режим средств измерений» Лабораторная работа №6 Исследование динамического режима средств измерений 1. Динамическая погрешность средства измерения
-
Исследование фотоэлектрических свойств полупроводниковых материалов
Схема монохроматора, используемого для исследования фотоэлектрических свойств полупроводников. Экспериментальные результаты исследования спектральной зависимости фотопроводимости. Зависимость фотопроводимости сульфида кадмия от интенсивности облучения.
-
Расчет поляризационных характеристик оптических резонаторов
Санкт-Петербургский Государственный Электротехнический Университет СПбГЭТУ («ЛЭТИ») Пояснительная записка к курсовому проекту по дисциплине «Теоретические основы квантовых приборов»
-
Экспериментальные исследования электромагнитной индукции 28
Нижегородский Государственный Технический Университет. Лабораторная работа по физике №2-28. Экспериментальные исследования электромагнитной индукции.
-
Определение скорости распространения звука в воздухе
Санкт-Петербургский Государственный электротехнический университет Отчет по лабораторной работе №5 «Определение скорости распространения звука в воздухе»