Referat.me

Название: Алгоритмы численного решения задач

Вид работы: контрольная работа

Рубрика: Информатика и программирование

Размер файла: 79.21 Kb

Скачать файл: referat.me-134492.docx

Краткое описание работы: Графоаналитический метод решения задач. Получение задачи линейного программирования в основном виде. Вычисление градиента и поиск экстремумов методом множителей Лагранжа. Параболоид вращения функции. Поиск решения на основе условий Куна-Таккера.

Алгоритмы численного решения задач

Решить графоаналитическим методом.

Задача 1

maxj (X) = - 2x1 + x2 + 5x3

при 4x1 + 2x2 + 5x3 ³ 12

6x1 - 3x2 + 4x3 = 18

3x1 + 3x2 - 2x3 £ 16

Х ≥ 0

Здесь число n = 3 и число m = 3.

Выразим из ограничений и х3 :

≥ 0

Подставим его в целевую функцию

maxj (X) =

Получим новые ограничения:

х ≥ 0

Получили задачу линейного программирования в основном виде для n = 2

Вычисляем градиент :

= =

х2 =2х1 -4,7
х2 =
х 2 =6-2х1
х2 =2х1 -6
D
E
C
A

Рисунок 1

Прямые a, c, d и eпересекаются и образуют четырехугольник ACDE. Определим max φ (Х), который удовлетворяет условию Х>=0:

Это точка D (0,7; 4,7; 0).

Функция φ (Х* ) в точке D:

φ (Х* ) = 38,3

Найти экстремумы методом множителей Лагранжа

Задача 2

extr φ (X) = 4x1 - x2 2 - 12

при x1 2 + x2 2 = 25

Составим функцию Лагранжа:

L (X,λ) = 4x1 - x2 2 - 12 + λ (x1 2 + x2 2 - 25)

h (X) = x1 2 + x2 2 - 25 = 0 - функция ограничения.

Составим систему уравнений из частных производных и приравняем их нулю.

Решим данную систему уравнений:

2x2 ( λ- 1) = 0

Предположим, что x2 ≠ 0, тогда λ= 1 подставим в первое уравнение системы.

4 - 2x1 = 0

2x1 = - 4

x1 = 2

Подставим x1 в третье уравнение системы.

4 +x2 2 - 25 = 0

x2 2 - 21 = 0

x2 2 = 21

x2 = ±4,5826

Параболоид вращения функции h (x).

В двухмерной проекции график выглядит так:

А2
А1

Рисунок 2.

На рис.2 видно, что в точках А1 и А2 функция φ (X) = h (X). В этих точках функция φ (X) равна минимальному значению.

(X** )

N

X1 * X2 * λ* φ (X* ) Примечание
1 2 4,5826 1 -24,25 Min
2 2 -4,5826 1 -24,25 Min

Решить обобщенным методом множителей Лагранжа или на основе условий Куна-Таккера.

Задача 3

extr φ (X) = 9 (x1 - 5) 2 + 4 (x2 - 6) 2 =

при 3x1 + 2x2 >= 12

x1 - x2 <= 6

Решим задачу на основе условий Куна-Таккера.

Составим функцию Лагранжа.

L (X,λ) = + λ1 (3x1 + 2x2 - 12) + λ2 (x1 - x2 - 6) =

Составим систему уравнений из частных производных и приравняем их нулю.

Решим систему уравнений.

1) Предположим, что λ2 ≠ 0, тогда из уравнения (d) получим

x2 = х1 - 6

Пусть λ1 = 0 и x1 ≠ 0, тогда из уравнения (а) получим

18x1 - 90 - λ2 = 0, λ2 = 18х1 - 90

Пусть x2 ≠ 0, тогда из уравнения (b) получим

8x2 - 48 - λ2 = 0

Подставив в уравнение выражения для x2 и λ2 , получим

x1 = 4

x2 = - 2

x1 * = 4; x2 * = - 2; φ (Х) * = 265

Трехмерный график целевой функции для данной задачи

Двухмерная проекция

b(x)
φ(x)
a(x)
А

Рисунок 3

На рис.3 видно, что в точке А функция b (X) = a (X), которые находятся в параболоиде вращения целевой функции.

В этой точке функция φ (X) равна максимальному значению.

2) Предположим, что λ2 = 0 и x2 ≠ 0, тогда из уравнения (b) получим

8x2 - 48 + 2λ1 = 0

x2 =

x2 = 6 -

Предположим, что x1 ≠ 0, тогда из уравнения (а) выразим x1 .

18х1 - 90 + 3λ1 = 0

18 = 90 - 3λ1

х1 =

х1 = 5 -

Подставим выражения для x1 и x2 в уравнение (с) системы.

а) = 0, x1 = 5; x2 = 6

б) = 15

x1 = 2,5; x2 = 2,25

Подставив корни x1 = 5; x2 = 6 в целевую функцию получим φ (Х) = 0, а корни x1 = 2,5; x2 = 2,25 - получим φ (Х) = 112,49

Таким образом:

x1 * = 5; x2 * = 6; φ* (Х) = 0

На рис.4 видно, что в точке В функция φ (X) = a (X). В этой точке функция φ (X) равна минимальному значению.

В
a(X)
b(X)
φ(X)

Рисунок 4

X*

N

X1 * X2 * φ (X* ) Примечание
1 5 6 0 Min
2 4 -2 265 Max

Получить выражение вектор-функции и матрицы Якоби системы и составить алгоритм численного решения задачи на основе условий Куна-Таккера.

Задача 4

maxφ (X) = - x1 2 - x2 2 +2х2

при x1 + x2 >= 18

x1 + 2 x2 >= 14

Х>=0

Найдем выражение вектор-функции системы.

Составим функцию Лагранжа.

L (X,λ) = - x1 2 - x2 2 + 2х2 + λ1 (x1 + x2 - 18) + λ2 (x1 + 2x2 - 14)

Вектор-функция системы:

Составим матрицу Якоби.

Составим алгоритм численного решения задачи:


Рисунок 5.

Похожие работы

  • Формирование инвестиционного портфеля

    Задача квадратичного программирования с параметром в правых частях ограничений и ее применение при формировании портфеля ценных бумаг.

  • Исследование устойчивости, решение задач линейного программирования графическим способом

    Строение системы уравнений-ограничений и ее переменных, графический способ решения задач линейного программирования на плоскости. Выражение неизвестных через две независимые переменные, являющиеся координатными осями графика. Значение целевой функции.

  • Модели и методы принятия решения

    Построение пространства допустимых решений. Нахождение оптимального решения с помощью определения направления убывания целевой функции. Нахождение оптимальной точки. Поиск экстремумов методом множителей Лагранжа. Условия экстремума Куна-Таккера.

  • Программа вычисления минимума заданной функции

    Постановка задачи и ее формализация. Поиск значений интерполяционного многочлена в точках x1 и x2. Поиск минимума функции F(x) на отрезке [a;b]. Проверка условий сходимости методов. Тестирование программных модулей. Детализированная схема алгоритма.

  • Регрессионные зависимости

    Вычисление значений регрессионно-авторегрессионной зависимости заданного выражения линейного программирования. Графическое представление математической модели в виде уравнения регрессии. Принципи оптимизации производственных и коммерческих операций.

  • Решение задач исследования операций

    Целевая функция. Базисная переменная. Симплекс метод, таблица. Коэффициенты при свободных переменных в целевой функции. Задача квадратичного программирования, максимизации функции. Функция Лагранжа. Координаты стационарной точки. Система ограничений.

  • Приближенное вычисление значений определенного интеграла

    Сущность и особенности применения метода средних треугольников. Порядок расчета по методу трапеций и Ньютона-Котеса. Формула Чебышева и значения узлов ее квадратуры. Составление блок-схемы программы и ее основных процедур различными численными методами.

  • Нелинейное программирование

    Постановка задачи нелинейного программирования. Критерии оптимальности в задачах с ограничениями. Задачи с ограничением в виде равенств. Метод исключения переменных. Интерпретация условий Куна-Таккера. Функции нескольких переменных. Методы прямого поиска.

  • Математичне моделювання економічних систем

    Задача лінійного програмування. Розв’язання задачі геометричним методом. Приведення системи рівнянь до канонічного вигляду. Розв’язання симплекс-методом. Розв’язок двоїстої задачі. Задача цілочислового програмування і дробово-лінійного програм.

  • Исследование операций

    Математическая модель задачи. Система ограничений. Составление симплекс-таблиц. Разрешающий элемент. Линейное программирование. Коэффициенты при свободных членах. Целевая функция. Метод потенциалов, северо-западного угла. Выпуклость, вогнутость функции.