Referat.me

Название: Быстродействующий адаптивный наблюдатель в системе компенсации неизвестного запаздывания

Вид работы: реферат

Рубрика: Информатика и программирование

Размер файла: 46.04 Kb

Скачать файл: referat.me-137599.docx

Краткое описание работы: Настоящая работа посвящена построению системы компенсации неизвестного запаздывания. Наличие большого запаздывания отрицательно сказывается на работоспособности системы управления.

Быстродействующий адаптивный наблюдатель в системе компенсации неизвестного запаздывания

БЫСТРОДЕЙСТВУЮЩИЙ АДАПТИВНЫЙ НАБЛЮДАТЕЛЬ В СИСТЕМЕ КОМПЕНСАЦИИ НЕИЗВЕСТНОГО ЗАПАЗДЫВАНИЯ

Настоящая работа посвящена построению системы компенсации неизвестного запаздывания. Наличие большого запаздывания, как известно [1], отрицательно сказывается на работоспособности системы управления.

Для компенсации неизвестного запаздывания разработана адаптивная система, состоящая из быстродействующего адаптивного наблюдателя, вычисляющего оценки неизвестных параметров и запаздывания системы управления, и прогнозатора Смита, компенсирующего это запаздывание.

Центральным моментом работы является построение алгоритма быстродействующего адаптивного наблюдателя для оценивания неизвестного запаздывания, так как прогнозатор Смита применим лишь в тех случаях, когда запаздывание априори известно. Этот алгоритм основан на использовании метода настраиваемой модели. Суть алгоритма изложена ниже.

Пусть поведение интересующего нас объекта описывается следующим дифференциальным уравнением:

, (1)

;

Здесь a1=3, a0=2 - известные постоянные коэффициенты; - неизвестные постоянные. Тогда структурная схема соответствующего процесса управления будет иметь вид, представленный на рис. 1. Здесь приборному измерению доступны вход xd(t) и выход x(t) системы управления.

Построим быстродействующий адаптивный наблюдатель для идентификации неизвестных параметров системы , а также прогнозатор Смита для компенсации запаздывания , после чего будем подставлять получаемые наблюдателем оценки в прогнозатор.

Рис 1. Система управления для объекта с неизвестным запаздыванием.

y(t)

v(t) –

+


Рис. 2. Адаптивная система компенсации неизвестного запаздывания.

На каждом из подынтервалов времени функционирования системы Jj настраиваемую модель опишем следующими уравнениями:

(2)

,

где - параметры модели, настраиваемые соответственно на параметры объекта (1).

Введем ошибку e(t) = x(t) - y(t).

Конечная структурная схема системы управления с адаптивным наблюдателем и прогнозатором Смита показана на рис. 2.

Система уравнений для выходного сигнала прогнозатора Смита v(t) и входного сигнала объекта, прогнозатора и наблюдателя u(t):

Уравнение для ошибки e(t) будет иметь вид (вычитаем (2) из (1) и линеаризуем правую часть):

, (3)

где

Приведем (3) к системе уравнений первого порядка. Положим

Тогда в векторной форме уравнение (3) будет иметь вид

+ (4)

или в краткой форме

,

где, , A=, Z= .

Решением (4) будет

(5)

или в краткой форме

где Ф(t)= , R(t)= - решения уравнений

(6)

. (7)

Перепишем первую строку системы (5) в виде

(8)

где

.

Здесь w(t) и - известные величины для любого t; вектор g содержит неизвестные параметры объекта, а векторы bj (j=0,l,...,N-l) являются функциями перестраиваемых параметров эталонной модели .

Набирая данные на каждом из подынтервалов Jj в моменты времени tj1,...,tjm, образуем из (8) алгебраическую систему вида

или в матричной форме

(9)

Число m выбирается так, чтобы уравнений в (9) было не меньше числа неизвестных параметров. В данном случае m больше или равно 3.

Решение алгебраической системы (9) при этом записывается в виде

(10)

где - псевдообратная матрица.

Изменение параметров bj при переходе от подынтервала Jj к Jj+1 осуществляется по рекуррентной формуле

, (11)

где L=diag(l1,....,l3) - вещественная диагональная матрица, все числа li>0. Можно показать [2], что этот процесс перестройки параметров сходится экспоненциально, т.е. значения перестраиваемых параметров модели сходятся к значениям неизвестных параметров объекта .

Таким образом, для того, чтобы идентифицировать постоянные неизвестные параметры объекта (1), параметры настраиваемой модели (2) следует изменять с помощью алгоритма, который описывается уравнениями (6)-(11).

Было проведено численное моделирование этой системы на ЭВМ в среде MATLAB 5.2. Результаты компьютерного моделирования подтверждают эффективность разработанного алгоритма.

Предлагаемый алгоритм адаптивного наблюдателя обладает важными для практики свойствами: заданной длительностью переходного процесса по параметрам и запаздыванию; отсутствием взаимного влияния переходных процессов настройки в разных параметрических каналах и практической независимостью времени переходных процессов по параметрам и запаздыванию от изменения амплитуды входных и выходных сигналов.

Список литературы

[1] Гурецкий X. Анализ и синтез систем управления с запаздыванием. Пер. с польского. - М.: Машиностроение, 1974.

[2] Копысов О.Ю., Прокопов Б.И. Построение алгоритма перестройки параметров и запаздывания в методе настраиваемой модели. М.: МГИЭМ, 1999.

3. А.В. Старосельский, Московский Государственный Институт Электроники и Математики, быстродействующий адаптивный наблюдатель в системе компенсации неизвестного запаздывания

Похожие работы

  • Радиорелейная связь: организация дальней связи

    В России наиболее широкое распространение получили две технологии построения транспортной инфраструктуры оператора связи: на основе волоконно-оптических систем и на основе систем радиосвязи.

  • Эволюционное моделирование некоторых систем с сосредоточёнными параметрами

    В проблемах прогноза и оценки социальных, экологических, экономических мероприятий часто нужно моделировать динамику взаимодействия системы с его окружением (по обмену ресурсами).

  • Автоматическая система регулирования вязкости топлива

    1. Описание устройства и взаимодействие элементов САР Измеритель вязкости и пневмопреобразователь мотора вращает с постоянной скоростью ведущий диск

  • Cинтез систем

    Введение Управление каким-либо объектом – это процесс воздействия на него с целью обеспечения требуемого течения процессов в объекте или требуемого изменения его состояния. Основой управления является переработка информации о состоянии объекта в соответствии с целью управления.

  • Устройство современных модемов

    Общие сведения. Состав модема для КТСОП. Скремблирование. Эхо подавление.

  • Дискретные сигналы

    Дискретизация непрерывных сигналов. Связь спектров дискретного и непрерывного сигналов. Преобразование Фурье и Лапласа для дискретных сигналов.

  • Дискретные цепи

    Разностное уравнение и дискретная цепь. Передаточная функция дискретной цепи. Общие свойства передаточной функции. Частотные характеристики. Импульсная характеристика. Свертка.

  • Численное решение системы линейных уравнений с помощью метода исключения Гаусса с выбором главного элемента по столбцу

    Постановка задачи, математические и алгоритмические основы решения системы линейных алгебраических уравнений. Решение системы данных уравнений методом Гаусса с выбором главного элемента по столбцу. Функциональные модели и блок-схемы решения задачи.

  • Принципы построения систем автоматического управления

    Теория автоматического управления как наука, предмет и методика ее изучения. Классификация систем автоматического управления по различным признакам, их математические модели. Дифференциальные уравнения систем автоматического управления, их решения.

  • Метод Гаусса для расчета электрических цепей

    Разработка алгоритма составления системы уравнений при помощи законов Кирхгофа по определенной электрической схеме. Приложение для решения данной системы методом Гаусса с выбором ведущего элемента по строке. Описание программы, руководство пользователя.