Referat.me

Название: Расчет автогрейдеров

Вид работы: курсовая работа

Рубрика: Транспорт

Размер файла: 133,78 Kb

Скачать файл: referat.me-337241.docx

Краткое описание работы: Определение радиуса кривизны отвала и производительности автогрейдеров. Расчет тягового сопротивления самоходной машины для рабочего и транспортного режимов работы. Исчисление номинальной силы тяги по сцеплению и мощности двигателя автогрейдера.

Расчет автогрейдеров

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра: "Автомобиле - и тракторостроение"

Расчет автогрейдеров

Выполнил:

студент группы АТФ-3С

Бондарев И.Ю.

Проверил:

Шевчук В.П.

Волгоград 2010 г.

Теоретическая часть

К главным и основным параметрам автогрейдеров относятся: масса автогрейдера та , удельная мощность, высота отвала с ножом о ), длина отвала без удлинителя Lo , скорости движения, высота подъема отвала в транспортное положение h , угол резания , боковой вынос отвала l , заглубление (опускание) отвала ниже опорной поверхности h Г ; колесная формула; угол для срезания откосов между опорной поверхностью и режущей кромкой отвала, вынесенного за пределы основной рамы и наклоненного так, что один край режущей кромки находится на опорной поверхности, а другой максимально поднят ( = 0... 80°); угол наклона отвала или угол зарезания, аналогичен , но определяется при положении отвала, симметричного оси автогрейдера ( = 0.. .30°); угол захвата (рис. 2.4.3.1)—угол в плане между режущей кромкой отвала и осью автогрейдера ( = 0±90°); при вырезании грунта = 30...40°; при перемещении = 60...75°, при планировке = 90°.

Радиус кривизны отвала (рис. 1,б)

,

где — угол опрокидывания отвала, во избежание пересыпания грунта за отвал =65... 75°; при установке отвала

,

где — центральный угол, град.

Производительность. При постройке насыпи из боковых резервов производительность (м3 /ч)

(1)

где V — объем грунта, перемещаемого за один проход, м3

(2)

=1,8...2,0 — коэффициент наполнения; =30...40° — угол естественного откоса; —продолжительность цикла, с;

, , и , , — длина пути (м) и скорость (м/с) соответственно резания, перемещения и обратного (холостого) хода; — время на переключение передач, с; =5 с; t 0 — время на опускание и подъем отвала, с; to =1,5... 2,5 с; — время поворота в конце участка, с; — коэффициент разрыхления грунта. Тяговые сопротивления и тяговый расчет. Различают два режима работы автогрейдера: рабочий и транспортный. Для первого характерны большие тяговые сопротивления и малые скорости движения, а для второго при движении с поднятым отвалом—большие скорости движения и сравнительно малые тяговые усилия.

При рабочем режиме общее тяговое сопротивление (кН)

, (3)

где — сопротивления соответственно резанию грунта, трению ножа о грунт, перемещению призмы волочения по грунту, перемещению грунта вдоль отвала, перемещению грунта вверх по отвалу, перемещению автогрейдера на колесах, преодолению уклона пути и разгона автогрейдера до установившейся рабочей скорости, кН; ;— соответственно суммарные сопротивления копанию и перемещению, кН. Сопротивление (кН) резанию грунта

, (4)

где — удельное сопротивление грунта резанию ножом, кН/м2 : SC проекция площади поперечного сечения стружки грунта на плоскость, перпендикулярную к направлению движения автогрейдера, м2 ; при угле захвата =90° и <90° и угле зарезания = 0 (отвал горизонтален) соответственно (м2 )

Sc = Lo hp и ;(5)

Lo — в м; h 0 глубина резания, м.

При резании половиной длины отвала

где все линейные размеры — в м.


Сопротивление (кН) трению ножа о грунт.

, (6)

где — вертикальная составляющая суммарного усилия, действующего на нож, зависящая от типа автогрейдера, положения ножа внутри базы, угла захвата и определяемая из общей схемы сил, действующих на автогрейдер, кН. Для ориентировочных предварительных расчетов при колесных схемах 123, 112, 133 для легких автогрейдеров =2,5... 40,0 кН, средних =40... 60 кН, тяжелых =60 ... 80 кН;fc — коэффициент трения стали о грунт.

Сопротивление (кН) перемещению призмы волочения

, (7)

где —вес призмы волочения, кН; —удельный вес грунта, кН/м3 ; — коэффициент разрыхления грунта; — угол трения грунта о грунт.

Сопротивление (кН) перемещению грунта вдоль отвала

(8)

и вверх по нему

,(9)

где — сила перемещения призмы волочения, нормальная в плане к отвалу, кН; — сила трения грунта при движении вдоль отвала.


Общее сопротивление копанию грунта автогрейдером (кН)

Сопротивление перемещению автогрейдера (кН)

,

где —суммарный коэффициент сопротивления качению колес;

суммарная нормальная реакция на все колеса, кН; — масса автогрейдера, кг; g=9,81 м/с2 ; — угол наклона поверхности движения к горизонту, град.

При <10°

при >10°

Сопротивление F 8 (кН) определяют как силу инерции при разгоне

(10)

где — масса автогрейдера и грунта в призме волочения, кг; vp — рабочая скорость движения, м/с; tP - время разгона, с; =3... 5 с. '

Сила сцепления автогрейдера (кН)

,


где — характеристика развески колес по осям автогрейдера; е=1 при схеме 333, 133, 222 и =0,7...0,75 при схеме 112 и 123; G а — полный конструктивный вес, кН.

Номинальная сила тяги по сцеплению (кН), соответствующая 20% коэффициента буксования, при котором тяговая мощность близка к максимальной,

Условия возможности рабочего движения по сцеплению

При движении с установившейся рабочей скоростью (F 8 =0)возможную максимальную площадь сечения вырезаемой стружки Sc2 ) определяют из уравнения

,

где левая часть уравнения представляет собой свободное тяговое усилие, которое реализуется непосредственно для копания. При разработке автогрейдером выемки площадью поперечного сечения SK 2 ) необходимое число проходов

где — коэффициент, учитывающий неравномерность сечения стружки при отдельных проходах; = 1,30 ... 1,35; Sc — по уравнению (5).

При транспортном режиме общее тяговое сопротивление (кН)


где F 9 — сопротивление воздуха, кН; F8 — по формуле (10), кН.

Сопротивление воздуха (кН)

где k 0 — коэффициент обтекаемости;

k 0 =0,6...0,7 Н-с24 ; — лобовая площадь, м2 ;

; vT установившаяся транспортная скорость, км/ч.

Мощность двигателя.

На первой рабочей скорости при режиме максимальной тяговой мощности с учетом коэффициента буксования 6 = 20% двигатель должен работать на режиме максимальной мощности (кВт)

,(11)

где G a — в кН; vp в м/ч; — общий КПД трансмиссии, kB Ы X — коэффициент выходной мощности двигателя; kB Ы X =0,9; ko коэффициент, учитывающий отбор мощности на привод вспомогательных механизмов (подъем отвала и др.);. ko =0,75 . .. 0,90.

Мощность (кВт) при передвижении на максимальной транспортной скорости v т max

,(12)

гдеG a и F 9 в кН; —в м/ч.

По наибольшему значению N [формулы (11) и (12)] с коэффициентом запаса = 1,2 ... 1,4 подбирают двигатель.

Рис. 2.4.3.1. Схема к расчету автогрейдера в рабочем режиме (а) и его отвала (б)

Внешние силы и реакции, действующие на автогрейдер. Рассмотрим внешние силы и реакции на примере наиболее распространенного автогрейдера с колесной схемой 123 при копании грунта (рис. 1,а). На автогрейдер действуют активные силы: Ga — вес автогрейдера (кН), силы тяги на ведущих колесах Рк2 и Рк3 . Реактивные силы — суммарные нормальные составляющие реакции на передние R 1 и задние R '2 и R ' z колеса, суммарные касательные составляющие на те же колеса foR 1 , foR 2 и foR ' Z (сопротивления движению колес), составляющие реакции, действующие на отвал, Rx , Ry и Rz , боковые горизонтальные реакции F '1 F'2 , F'3 и F 1 .

При рассмотрении этой системы сил сделаны следующие допущения: пренебрегли смещением реакций R 1 R '2 и R '3 вследствие деформации шин, то есть , так как они малы по сравнению с длиной базы L a ; реакции f 0 R 1 , fQ R 2 , f 0 R '3 , F 1 , F '2 и F ' Z , силы и расположены в одной плоскости на уровне опорной линии колес; составляющие реакций грунта Rx , Ry , Rz приложены к переднему концу отвала параллельно соответствующим осям координат; на режиме максимальной тяговой мощности ; вертикальные составляющие реакций на правые и левые колеса соответствующих осей равны между собой; 2 R 2 '+ 2 R 3 ' = R 2 , которая приложена на оси подвески заднего балансира по оси автогрейдера, соответственно 2 fo R 2 +2 fo R 3 = fo R 2 ; общая сила тяги на ведущих колесах и приложена по оси автогрейдера; боковые реакции на задние оси F 2 '=3 ' и F 2 '+ F 3 = F 1

Рассматривая отвал как косой клин, можно найти соотношения между составляющими реакции грунта, действующими на отвал

где x 1 и х2 определяются по теории косого клина; в среднем x 1 =0,15...0,20; х2 =0,3...0,4.

Считая, что автогрейдер находится в равновесии под действием системы сил и реакций, показанной на рисунке 2.4.3.1, а, можно найти силы и реакции из шести уравнений равновесия относительно пространственной системы координат xyz . Начало координат в точкеО

Совместным решением этих уравнений определяют реакции Rx , Ry , Rz , R 1 , R 2 , F 1 и F 1 Возможность реализации тягового усилия Рк проверяют по условию сцепления.


Порядок выполнения работы

Исходные данные

Параметры индекс машины
ГС-10.01
Класс 100
Двигатель:
модель Д-243
мощность, кВт 58,7
Тип трансмиссии механическа
Скорость движения вперед/назад, км/ч 2...35/
4,2...9,4
Колесная формула 1x2x2
База, мм 4200
Колея колес передних/задних, мм 1800/1770
Дорожный просвет, мм 300
Радиус поворота, мм 4750
Тип рамы ШСР*
Угол складывания шарнирно-сочлененной рамы, град н/д
Смещение колес переднего моста, мм н/д
Угол наклона передних колес, град 20
Рабочее оборудование:
грейдерный отвал:
размеры (длина х высота), мм 2730 х 470
максимальное заглубление, мм 100
угол резания регулируемый, град 30...70
угол поворота в плане, град ± 45
боковой вынос, мм 600/400
угол обрабатываемого откоса, град
бульдозерный отвал:
размеры (длина х высота), мм 2440 х 625
максимальное заглубление, мм 50
кирковщик (рыхлитель):
число зубьев -
ширина киркования, мм -
наибольшая глубина рыхления, мм -
Габаритные размеры, мм 7140х2400х3220
Масса эксплуатационная, кг 7500
Изготовитель ОАО "Брянский арсенал"

между опорной поверхностью и режущей кромкой отвала, вынесенного за пределы основной рамы и наклоненного так, что один край режущей кромки находится на опорной поверхности, а другой максимально поднят ( = 0... 80°); угол наклона отвала или угол зарезания, аналогичен , но определяется при положении отвала, симметричного оси автогрейдера ( = 0.. .30°); угол захвата - угол в плане между режущей кромкой отвала и осью автогрейдера ( = 0±90°); при вырезании грунта = 30...40°; при перемещении = 60...75°, при планировке = 90°.

Радиус кривизны отвала (рис. 1,б):

(м),

где — угол опрокидывания отвала, во избежание пересыпания грунта за отвал =65... 75°; при установке отвала , где — центральный угол, град.

Производительность. При постройке насыпи из боковых резервов производительность будет равна:

(1)

где V — объем грунта, перемещаемого за один проход, м3

(2)


=1,8...2,0 — коэффициент наполнения; =30...40° — угол естественного откоса; —продолжительность цикла, с;

(с)

, , и , , — длина пути (м) и скорость (м/с) соответственно резания, перемещения и обратного (холостого) хода; — время на переключение передач, с; =5 с; t 0 — время на опускание и подъем отвала, с; to =1,5... 2,5 с; — время поворота в конце участка, с; — коэффициент разрыхления грунта.

Тяговые сопротивления и тяговый расчет

Различают два режима работы автогрейдера: рабочий и транспортный. Для первого характерны большие тяговые сопротивления и малые скорости движения, а для второго при движении с поднятым отвалом—большие скорости движения и сравнительно малые тяговые усилия.

При рабочем режиме общее тяговое сопротивление (кН)

, (3)

где — сопротивления соответственно резанию грунта, трению ножа о грунт, перемещению призмы волочения по грунту, перемещению грунта вдоль отвала, перемещению грунта вверх по отвалу, перемещению автогрейдера на колесах, преодолению уклона пути и разгона автогрейдера до установившейся рабочей скорости, кН; ;— соответственно суммарные сопротивления копанию и перемещению, кН.

Сопротивление (кН) резанию грунта


(кН) (4)

где — удельное сопротивление грунта резанию ножом, кН/м2 : SC проекция площади поперечного сечения стружки грунта на плоскость, перпендикулярную к направлению движения автогрейдера, м2 ; при угле захвата =90° и <90° и угле зарезания = 0 (отвал горизонтален) соответственно (м2 )

Sc = Lo hp =3,7*0,05=0,2 (м2 )

;(5)

Lo — в м; h 0 глубина резания, м.

Сопротивление (кН) трению ножа о грунт.

(кН) (6)

де — вертикальная составляющая суммарного усилия, действующего на нож, зависящая от типа автогрейдера, положения ножа внутри базы, угла захвата и определяемая из общей схемы сил, действующих на автогрейдер, кН. Для ориентировочных предварительных расчетов при колесных схемах 123, 112, 133 для легких автогрейдеров =2,5... 40,0 кН, средних =40... 60 кН, тяжелых =60 ... 80 кН;fc — коэффициент трения стали о грунт, который подбирается по таблице 1.


Таблица 1. Коэффициент трения грунта о поверхность ножа (полированная сталь)

Состояние грунта Глина Песчаник Песчано-глинистый Глинистый перегной
Влажный 0,43-0,48 0,79-0,82 0,63-0,78 0,45-0,52
Сухой 0,33-0,41 0,38-0,55 0,36-0,5 0,350,43

Сопротивление (кН) перемещению призмы волочения:

(кН), (7)

где —вес призмы волочения, кН;

Сопротивление (кН) перемещению грунта вдоль отвала

(кН) (8)

и вверх по нему

кН) (9)

где — сила перемещения призмы волочения, нормальная в плане к отвалу, кН; — сила трения грунта при движении вдоль отвала.

Общее сопротивление копанию грунта автогрейдером (кН)

(кН)

Сопротивление перемещению автогрейдера (кН)

,(кН)


где —суммарный коэффициент сопротивления качению колес;

суммарная нормальная реакция на все колеса, кН; — масса автогрейдера, кг; g=9,81 м/с2 ; — угол наклона поверхности движения к горизонту, град.

При <10°

при >10°

Сопротивление F 8 (кН) определяют как силу инерции при разгоне

(кН)(10)

где — масса автогрейдера и грунта в призме волочения, кг; vp — рабочая скорость движения, м/с; tP - время разгона, с; =3... 5 с. '

Сила сцепления автогрейдера (кН)

(кН)

где — характеристика развески колес по осям автогрейдера; е=1 при схеме 333, 133, 222 и =0,7...0,75 при схеме 112 и 123; G а — полный конструктивный вес, кН.

Номинальная сила тяги по сцеплению (кН), соответствующая 20% коэффициента буксования, при котором тяговая мощность близка к максимальной,

(кН)


Условия возможности рабочего движения по сцеплению

При движении с установившейся рабочей скоростью (F 8 =0)возможную максимальную площадь сечения вырезаемой стружки Sc2 ) определяют из уравнения

5,3-0,01=28*0,1

где левая часть уравнения представляет собой свободное тяговое усилие, которое реализуется непосредственно для копания. При разработке автогрейдером выемки площадью поперечного сечения SK 2 ) необходимое число проходов

где — коэффициент, учитывающий неравномерность сечения стружки при отдельных проходах; = 1,30 ... 1,35; Sc — по уравнению (5).

При транспортном режиме общее тяговое сопротивление (кН)

(кН)

где F 9 — сопротивление воздуха, кН; F8 — по формуле (10), кН.

Сопротивление воздуха (кН)

(кН)


где k 0 — коэффициент обтекаемости; k 0 =0,6...0,7 Н-с24 ; — лобовая площадь, м2 ; ; vT установившаяся транспортная скорость, км/ч.

Мощность двигателя. На первой рабочей скорости при режиме максимальной тяговой мощности с учетом коэффициента буксования 6 = 20% двигатель должен работать на режиме максимальной мощности (кВт)

,(кВт)(11)

где G a — в кН; vp в м/ч; — общий КПД трансмиссии, kB Ы X — коэффициент выходной мощности двигателя; kB Ы X =0,9; ko коэффициент, учитывающий отбор мощности на привод вспомогательных механизмов (подъем отвала и др.);. ko =0,75 . .. 0,90.

Мощность (кВт) при передвижении на максимальной транспортной скорости v т max

,(кВт)(12)

гдеG a и F 9 в кН; —в м/ч.

По наибольшему значению N [формулы (11) и (12)] с коэффициентом запаса = 1,2 ... 1,4 подбирают двигатель

(кВт)

Похожие работы

  • Комплектование тракторных агрегатов

    МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО СЕЛЬСКОМУ ХОЗЯЙСТВУ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

  • Тяговый расчёт автомобиля

    Определение полной массы автомобиля. Выбор шин и определение радиуса ведущего колеса. Расчет и построение внешней скоростной характеристики двигателя. Определение передаточного числа главной передачи, удельной силы тяги, построение тяговой характеристики.

  • Расчет гидро привода автогрейдеров

    Содержание 1. Определение основных размеров базы автогрейдера…………………..……5 2. Определение линейных размеров рабочего оборудования автогрейдеров…………………………………………………………..…….…..6

  • Назначение и техническая характеристика автогрейдера ДЗ-122

    Содержание Введение 1. Выбор и расчет параметров автогрейдера для подготовительныхи земляных работ, техническая характеристика Назначение и техническая характеристика автогрейдера

  • Особенности входа в поворот многоосных автомобилей с различными схемами управляемых осей

    Процесс входа в поворот многоосных автомобилей с различными схемами расположения управляемых осей. Угловые скорость и ускорение продольной оси автомобиля, изменение радиуса кривизны траектории движения в зависимости от угла поворота управляемых колес.

  • Расчет производительности бульдозера, рыхлителя и скрепера

    Определение производительности бульдозера D7G "CAT" и скрепера. Выполнение их тягового расчета. Практическая оценка транспортной и эксплуатационной выработки рыхлителя. Проведение перерасчета показателей землеройной машины согласно формуле Зеленина.

  • Разработка бульдозеров

    Назначение и принцип работы бульдозера. Практический расчет основных параметров отвала (ширины, высоты, углов зарезания и захвата), силы тяги, мощности привода базовой машины, производительности при резании и перемещении грунта, прочности оборудования.

  • Двигатель внутреннего сгорания. Расчёт тягача

    Тяговый расчет, который производится для определения ряда параметров тягача и построения его тяговой характеристики. Характеристика потенциальной тяговой характеристики. Анализ скоростей тягача и передаточных чисел трансмиссии на различных передачах.

  • Кинематический расчёт автомобиля

    КИНЕМАТИЧЕСКИЙ РАСЧЕТ АВТОМОБИЛЯ ВАЗ 2101 Передаточное число трансмиссии на j – ой передаче определяется выражением ij = iКП j · iГП j , iГП=4,3, iКП1=3,75; iКП2=2,30; iКП3=1,49; iКП4=1,00.

  • Автогрейдер

    Министерство образования российской федерации Тюменский государственный нефтегазовый университет Институт транспорта Кафедра: ПТСДМ Реферат На тему «Автогрейдер»