Название: Практичне заняття
Вид работы: реферат
Рубрика: Астрономия
Размер файла: 151.82 Kb
Скачать файл: referat.me-1342.docx
Краткое описание работы: 1. Довести, що . Починаючи з якого n маємо Виберемо довільне число і покажемо, що існує такий номер N, що для всіх членів послідовності з номерами n > N виконується нерівність
Практичне заняття
1. Довести, що . Починаючи з якого n маємо
Виберемо довільне число і покажемо, що існує такий номер N, що для всіх членів послідовності з номерами n > N виконується нерівність
(1)
Для визначення N досить розв’язати нерівність (1) відносно n :
.
Отже, якщо , то нерівність (1) виконується для будь-якого наперед заданого числа . Якщо , то за N беремо цілу частину виразу , тобто N = . А якщо , то за N можна взяти 1 або будь-яке інше натуральне число.
Зокрема, при , N = . Отже, при дістанемо
2. З’ясувати, чи має границю послідовність (xn ), якщо:
а) б)
в)
а) Оскільки то послідовність () обмежена. Неважко бачити, що для всіх , тобто () монотонно зростає. Отже, вона має границю.
б) Члени послідовності з парними номерами прямують до 1 при , оскільки . А члени послідовності з непарними номерами прямують до 2 при . Отже, згідно з означенням, послідовність немає границі, тобто є розбіжною.
в) Дана послідовність є добутком нескінченно малої послідовності , оскільки , і обмеженої послідовності , тому що . Тоді за властивістю 2) задана послідовність має границю, що дорівнює 0.
3. Обчислити границі:
а) б)
в) г)
д) ; е)
є)
ж)
а) скористаємось теоремою про границю двох послідовностей. Неважко побачити, що границя першого доданка дорівнює 0, а другий доданок є добутком нескінченно малої послідовності на обмежену послідовність , тому його границя також дорівнює нулю. Отже, за властивістю 1( задана послідовність є нескінченно малою.
б) У даному випадку чисельник і знаменник мають нескінченні границі, тому користуватись теоремою про границю частки не можна. Перетворимо дріб, поділивши чисельник і знаменник на (найвищий степінь n ). Дістанемо
Оскільки маємо , , , , то, застосувавши теорему про границю суми і добутку, помічаємо, що границя чисельника дорівнює 1, а знаменника 3. за теоремою про границю частки маємо
в) Поділимо чисельник на знаменник дробу на , а потім скористаємось теоремою про границю суми і частки. Дістанемо
г) Аналогічно попередньому маємо
Оскільки при , а знаменник є нескінченно малою послідовністю, то задана послідовність є нескінченно великою, тобто
У прикладах б) - г) порівняйте старші степені чисельників і знаменників заданих дробів і зробіть висновок відносно одержаних відповідей.
д) У даному випадку маємо різницю двох нескінченно великих послідовностей. Позбавимося ірраціональності в чисельнику, вважаючи, що знаменник дорівнює 1, і застосуємо теорему про зв’язок нескінченно малої і нескінченно великої послідовностей. Матимемо.
е) Поділивши чисельник і знаменник виразу, що стоїть в дужках, на n і скориставшись властивістю степеня, дістанемо
Користуючись теоремою про границю добутку, частки і формули (1), маємо
є) Оскільки , то
. Тоді
ж) Маємо границю послідовності комплексних чисел. Обчислимо границі дійсної та уявної частин цієї послідовності. Оскільки
, то
Вправи для самоперевірки
1. Довести, що:
а) б) в)
2. Обчислити і визначити номер N () такий, що при всіх , коли:
а) б)
Відповідь : а) ; б)
3. Зясувати, чи має границю послідовність , якщо:
а) ; б) ;
в)
Відповідь : а) так; б) так; в) ні.
4. Обчислити границі:
1) 2) 3)
4) 5)
6) 7)
8) 9)
10) 11)
12) 13)
14) 15)
16) 17)
18)
Відповідь : 1) -2; 2) 0; 3) ; 4) 5) ; 6) 6; 7) 1; 8) 2;
9) ; 10) 3; 11) ; 12) 0; 13) ; 14) ; 15) ;
16) ; 17) ; 18) .
5. Обчислити суму всіх членів спадної геометричної прогресії 1,
Відповідь : S=3.
1. Знайти
Використовуючи теорему про границю добутку маємо:
Оскільки
аналогічно
Відповідь : - 9.
2. Знайти
.
3. Знайти
Завдання для перевірки знань
1. Довести, що при послідовність 3, має границею число 2.
2. Довести, що при послідовність має границею число 1,5.
Похожие работы
-
Знакозмінні та знакопостійні ряди Абсолютна та умовна збіжність
Знакозмінні та знакопостійні ряди. Абсолютна та умовна збіжність. План. 1. Означення закономірного ряду. 2. Теорема Коші. 3. Абсолютна та умовна збіжність.
-
Безкінечно малі функції
Безкінченно малі функції Визначення 1. Функція f(x) називається безкінченно малою функцією (або просто безкінченно малою) в точці х=х0 (або при хх0), якщо
-
Достатні ознаки збіжності рядів з додатніми членами ознаки порівняння Даламбера радикальна та
Пошукова робота на тему: Достатні ознаки збіжності рядів з додатніми членами: ознаки порівняння, Даламбера, радикальна та інтегральна ознаки Коші.
-
Розклад числа на прості множники
Реферат на тему: Розклад числа на прості множники Означення. Розкладом натурального числа на прості множники факторизацією числа) називається представлення його у вигляді
-
Нескінченно малі та нескінченно великі величини
Зміна величина х називається нескінченно малою, якщо в процесі її зміни наступить такий момент, починаючи з якого, абсолютна величина змінної х стає і залишається менше будь-якого, скільки завгодно малого, наперед загаданого додаткового числа
-
Теореми про диференціальні функції
МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ ТОРГОВЕЛЬНО-ЕКОНОМІЧНИЙ УНІВЕРСИТЕТ КОЛОМИЙСЬКИЙ ЕКОНОМІКО-ПРАВОВИЙ КОЛЕДЖ РЕФЕРАТ
-
Послідовності
План Числова послідовність. Означення границі числової послідовності. Основні теореми про границі. Обчислення деяких границь. Монотонні послідовності.
-
Границя функції
Коломийський коледж права і бізнесу Р Е Ф Е Р А Т на тему: ГРАНИЦЯ ФУНКЦІЇ” Виконав Кушмелюк Федір М. Перевірив: Чоботар О.В. Коломия 2002 План Границя числової послідовності.
-
Числові послідовності Границя основні властивості границь Нескінченно малі і нескінченно вели
Пошукова робота на тему: Числові послідовності. Границя, основні властивості границь. Нескінченно малі і нескінченно великі величини, їх властивості. Формулювання теореми про існування границі монотонної послідовності і функції. Порівняння величин. Еквівалентні нескінченно малі величини.
-
Формула Н ютона Лейбінца
Міністерство освіти України Коломийське В П У-17 Реферат На тему: Формула Ньютона – Лейбніца. Учня групи № 15 Лінькова А.М. Коломия 2002р. Безпосередньо за означенням інтеграли легко обчислювати лише для най- простіших функцій, таких, як y = k x, y = xІ Для інших функцій, наприклад тригонометричних, оьчислення границь сум ускладнюється.