Название: Нескінченно малі та нескінченно великі величини
Вид работы: реферат
Рубрика: Астрономия
Размер файла: 38.77 Kb
Скачать файл: referat.me-2856.docx
Краткое описание работы: Зміна величина х називається нескінченно малою, якщо в процесі її зміни наступить такий момент, починаючи з якого, абсолютна величина змінної х стає і залишається менше будь-якого, скільки завгодно малого, наперед загаданого додаткового числа
Нескінченно малі та нескінченно великі величини
Зміна величина х називається нескінченно малою, якщо в процесі її зміни наступить такий момент, починаючи з якого, абсолютна величина змінної х стає і залишається менше будь-якого, скільки завгодно малого, наперед загаданого додаткового числа , тобто |х| < .
Нескінченно малі величини найчастіше позначають літерами .
Наприклад, величина при n - є нескінченно малою.
Нескінченно мала величина є змінною величиною. Але, якщо постійну величину О розглядати як змінну величину, що приймає одне й те ж значення, то в цьому розумінні вона є нескінченно малою, тобто = 0, то нерівність || < виконується для будь-якого > 0 .
Жодну іншу постійну величину, якою би малою вона не була (наприклад, розмір електрона), не можна назвати нескінченно малою.
Розглянемо деякі властивості нескінченно малих величин.
Теорема 1. Алгебраїчна сума будь-якого скінченого числа нескінченно малих величин є величина нескінченно мала.
Доведення. Нехай задано k нескінченно малих величин . Доведемо, що їх алгебраїчна сума буде величиною нескінченно малою. Візьмемо скільки завгодно мале > 0. Згідно з означенням нескінченно малих в процесі їх зміни наступить такий момент, починаючи з якого будуть виконуватися нерівності:
Звідси, використовуючи властивості модуля, одержимо:
Отже, маємо:
Ця нерівність, згідно із означенням 11, означає, що є нескінченно малою величиною. Теорема доведена.
Теорема 2. Добуток обмеженої величини на нескінченно малу величину є величина нескінченно мала.
Доведення. Нехай у – обмежена величина, - нескінченно мала. Для обмеженої величини у існує таке число М, що . Згідно з означенням нескінченно малої в процесі змінювання наступить такий момент, починаючи з якого буде виконуватися нерівність для будь-якого . Тому, починаючи з деякого моменту, буде використовуватись нерівність
Ця нерівність означає, що є величиною нескінченно малою, що і треба було довести.
Наслідок 1. Добуток постійної величини на нескінченно малу є величина нескінченно мала.
Наслідок 2. Добуток скінченної кількості нескінченно малих величин є величина нескінченно мала.
Дійсно, постійно та нескінченно малі величини – обмежені величини, тому для них має місце твердження теореми 2.
Змінна величина х називається нескінченно великою, якщо в процесі її зміни наступить такий момент, починаючи з якого абсолютна величина х стає і залишається більше будь-якого, скільки завгодно великого, наперед загаданого додатного числа N , тобто |x| > N.
Наприклад, величина 10n при n - є величина нескінченно велика.
Між нескінченно великими і нескінченно малими величинами існує простий зв’язок: якщо х нескінченно велика величина, то - нескінченно мала, і навпаки, якщо у – нескінченно мала і у ¹ 0, то буде нескінченно великою величиною.
Тому можна довести, що алгебраїчна сума скінченної кількості нескінченно великих величин буде величиною нескінченно великою, добуток нескінченно великої величини на обмежену величину також буде нескінченно великою величиною.
Ділення нескінченно малих та нескінченно великих величин поки що не визначено і буде розглянуто далі, після визначення границі змінної величини.
Похожие работы
-
Безкінечно малі функції
Безкінченно малі функції Визначення 1. Функція f(x) називається безкінченно малою функцією (або просто безкінченно малою) в точці х=х0 (або при хх0), якщо
-
Економічний зміст похідної Використання поняття похідної в економіці
Економічний зміст похідної. Використання поняття похідної в економіці. Розглянемо задачу про продуктивність праці. Нехай функція и = и(t) відображає кількість виробленої продукції u за час t i необхідно знайти продуктивність праці в момент t0.
-
Теореми про диференціальні функції
МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ ТОРГОВЕЛЬНО-ЕКОНОМІЧНИЙ УНІВЕРСИТЕТ КОЛОМИЙСЬКИЙ ЕКОНОМІКО-ПРАВОВИЙ КОЛЕДЖ РЕФЕРАТ
-
Маса лінії Координати центра ваги плоскої кривої та фігури
Пошукова робота на тему: Маса лінії. Координати центра ваги плоскої кривої та фігури Приклади застосування означеного інтеграла до розв’язування простих задач механіки, фізики та інших областей. Деякі застосування в економіці.
-
Послідовності
План Числова послідовність. Означення границі числової послідовності. Основні теореми про границі. Обчислення деяких границь. Монотонні послідовності.
-
Границя функції
Коломийський коледж права і бізнесу Р Е Ф Е Р А Т на тему: ГРАНИЦЯ ФУНКЦІЇ” Виконав Кушмелюк Федір М. Перевірив: Чоботар О.В. Коломия 2002 План Границя числової послідовності.
-
Числові послідовності Границя основні властивості границь Нескінченно малі і нескінченно вели
Пошукова робота на тему: Числові послідовності. Границя, основні властивості границь. Нескінченно малі і нескінченно великі величини, їх властивості. Формулювання теореми про існування границі монотонної послідовності і функції. Порівняння величин. Еквівалентні нескінченно малі величини.
-
Похідна за напрямом Градієнт
1. Похідна за напрямом. Для характеристики зміни скалярного поля в заданому напрямі вводять поняття похідної за напрямом. Область простору кожній точці М якої поставлено у відповідність значення деякої скалярної величини
-
Практичне заняття
1. Довести, що . Починаючи з якого n маємо Виберемо довільне число і покажемо, що існує такий номер N, що для всіх членів послідовності з номерами n > N виконується нерівність
-
Диференціал 5
Диференціал План Диференціал функції. Геометричний зміст диференціала. Лінеаризація функції. Диференціал складної функції. Повний диференціал функції декількох змінних.