Название: Определение напряжений в элементах конструкций электротензометрированием
Вид работы: лабораторная работа
Рубрика: Промышленность и производство
Размер файла: 294.86 Kb
Скачать файл: referat.me-302096.docx
Краткое описание работы: Отчет по лабораторной работе «» Цель работы: изучение методики и экспериментальное определение напряжений в элементах конструкций электротензометрированием; сравнение расчетных и экспериментальных значений напряжений.
Определение напряжений в элементах конструкций электротензометрированием
Отчет по лабораторной работе «Определение напряжений в элементах конструкций электротензометрированием»
Цель работы: изучение методики и экспериментальное определение напряжений в элементах конструкций электротензометрированием; сравнение расчетных и экспериментальных значений напряжений.
Экспериментальное определение напряжений проводится при создании, сдаче в эксплуатацию или после определенного срока работы ответственных конструкций с целью оценки их прочности. Устройства, преобразующие механические величины в электрические, называются датчиками (деформации -(тензорезистор), линейных или угловых перемещений, давлений, усилий, скоростей, ускорений).
Тензорезистор (рис. 9.4) представляет собой плоскую петлеобразную спираль 1 из тонкой (0,01...0,03 мм) константановой (60 % меди и 40 % никеля) проволоки, вклеенной между двумя слоями рисовой бумаги 2. Рабочий тензорезистор наклеивается (клей БФ) на деталь и при ее нагружении деформируется совместно. При статическом нагружении рабочие тензорезисторы подключаются к измерителю деформации (цифровому) ИДЦ, электрическая схема которого (рис. 9.5) представляет собой высокочувстви-тельный измерительный четырехплечий мост Ч.Уитстона(1844).
Рис. 9.5. Электрическая схема ИДЦ
Постановка работы. На экспериментальной установке (рис. 9.6) проведены испытания ЭК в виде стальной (Е = 2 * 105 МПа; µ = 0,3) трубы ( D = 60 мм; d = 54 мм; L = 360 мм; l = 300 мм) при плоском изгибе, кручении и совместном изгибе с кручением с записью (табл. 9.3) ступеней рабочей нагрузки Р и показаний т измерителя деформаций цифрового ИДЦ (цена деления β= 10-5 1/дел.).
Рис. 9.6. Схема экспериментальной установки: 1- элемент конструкции; 2 - опора; 3 - коромысло; 4, 5 - грузы; 6 -блок; 7-прямоугольная розетка тензорезисторов; I, II, III - рабочие тензорезисторы
№ступени нагружения | Р, кН |
ΔР, кН |
Изгиб | Кручение | Изгиб с кручением | |||||||
m1 | Δ m1 | m11 | Δ m11 | m1 | Δ m1 | m11 | Δ m11 | m111 | Δ m111 | |||
0 | 0.9 | - | 23 | - | 25 | - | 22 | - | 20 | - | -7 | - |
1 | 1.8 | 0.9 | 45 | 22 | 49 | 24 | 45 | 23 | 39 | 19 | -14 | -7 |
2 | 2.7 | 0.9 | 67 | 22 | 74 | 25 | 67 | 22 | 61 | 22 | -22 | -8 |
3 | 3.6 | 0.9 | 89 | 22 | 99 | 25 | 89 | 22 | 81 | 20 | -28 | -6 |
4 | 4.5 | 0.9 | 113 | 24 | 124 | 25 | 111 | 22 | 100 | 19 | -34 | -6 |
Δ Pср=0,9 | Δ m1 ср =22,5 | Δ m1 1ср =24,75 | Δ m1 ср =22,25 | Δ m1 1ср =20 | Δ m1 11ср =-6,75 |
Требуется: определить расчетные и экспериментальные значения напряжений; вычислить отклонения расчетных от экспериментальных напряжений.
Проводим обработку экспериментальных данных табл. 9.3 и определяем
средние значения приращений нагрузки Δ P ср =∑ΔР/4 и показаний ИДЦ:
Δ m ср =∑Δm/4.
В дальнейшем все расчеты проводятся для одной ступени нагружения.
Опыт № 1. Определение напряжений при изгибе элемента конструкции
1. Вычисляем расчетное приращение напряжений в точке А при изгибе:
Δσ =
2. Рабочий тензорезистор I наклеен по направлению главной деформации Δε1 , и находится в условиях линейного напряженного состояния. Определяем экспериментальные приращения главной деформации и главного напряжения:
Δε1э =Δ1ср β=22,2*10-5 ; Δσэ =EΔε1э =2*10-5 =45 Мпа
3. Находим отклонение расчетных от эксперементальных напряжений:
δ=*100%=44,4*45/45*100%= -1,33
4. Для оценки прочности элемента конструкции определяем экспериментальное значение напряжений при максимальной нагрузке:
max σэ = Δσэ Pmax /ΔP=45*4.5/0.9=255МПа
Опыт № 2. Определение напряжений при кручении элемента конструкции
1. Вычисляем расчетные приращения касательных напряжений в точке А:
Δτ =(2*0,9*103 *300*10-3 )/14,58*10-6 =37 МПа
2. При кручении элемента конструкции реализуется частный случай плоского напряженного состояния, когда главная деформация Δε1э = - Δε3э . Главную деформацию Δε1 измеряет рабочий тензорезистор II, наклеенный под углом 45◦ . Определяем экспериментальные приращения главных деформаций:
Δε1э= Δm11 c р β=24,75*10-5 ; Δε3э =-24,75
3. Находим экспериментальные приращения касательных напряжений, которые при кручении равны приращениям главных напряжений:
Δτэ =(2*105 1+0.3)*24,75*10-5 =38 МПа
4. Определяем отклонение расчетных от экспериментальных напряжений:
δ=((37-38)/38)*100%=-2,63
5. Для оценки прочности при кручении элемента конструкции находим экспериментальное значение касательных напряжений при максимальной нагрузке:
max τэ max =38*4,5/0,9=190 МПа.
Опыт № 3. Определение напряжений при совместном изгибе и кручении элемента конструкции
1. Вычисляем расчетные приращения нормальных, касательных, главных и эквивалентных напряжений в точке А:
Δσ = (0,9*103 *360*10-3 )/7,29*10-6 =44,4 МПа
Δτ = (0,9*103 *300*10-3 )/14,58*10-6 =18,5 МПа
Δσ1/3
=0,5(44,4)=(22,2
28,9) МПа
Δσ1 =51,1МПа ; Δσ3 = -6,7 МПа
Их направление t
g2α== -
=-0.833; 2α0
=-39,8◦
; α0
=-19,9◦
Δσэкв4
==54,8 МПа
2. По трем показаниям ИДЦ прямоугольной розетки тензорезисторов ходим эксперимен-тальные приращения деформаций:
Δε1э =Δm1 ср β=22,25*10-5 ; Δε11э = Δm1 1 ср β = 20*10-5 ; Δε111э = Δm11 1 ср β=-6,75
3. Вычисляем экспериментальные приращения главных деформаций и их направление:
Δε1/3э =0,5(22,25*10-5 +(6,75)*
*10-5
2
=7,75*10-5
18,98*10-5
Δε1э= 26,73*10-5 ; Δε3э =-11,23*10-5
tg2α=(22.25 *10-5 -2*20*10-5 +(-6.75*10-5 )/22.25*10-5 -(-6.75*10-5 )=-0.844
С учетом этого 2α0 =-40,2◦ ; α0 =-20,1◦
4. Определяем экспериментальные приращения главных и эквивалентных напряжений:
Δσ1э =51,3 МПа
Δσ3э =-7,12
Δσэкв4 =55,2МПа
5. Вычисляем отклонение расчетных от экспериментальных эквивалентных напряжений:
δ=((54,8-55,2)/55,2)*100%=-0,7%
6. Для оценки прочности элемента конструкции находим экспериментальные эквивалентные напряжения при максимальной нагрузке:
![]() |
max σэ экв4 =55,2*4,5/0,9=276МПа
Выводы
1. Изучена методика определения напряжений электротензометрированием с целью экспериментальной оценки прочности элементов конструкций.
1.Во всех трех опытах отклонения результатов расчета от эксперимента не превышают 5 %. Следовательно, электротензометрирование может эффективно использоваться для экспериментального определения напряжений при оценке прочности элементов конструкций.
2.Расхождения между расчетными и экспериментальными напряжения ми обусловлены рядом принимаемых гипотез при выводе формул для расчета напряжений, а также погрешностями измерения деформаций при электротензометрировании.
Похожие работы
-
Определение напряжений сдвига в условиях резания с помощью модификации Макгрегора–Фишера
В общем случае сопротивление материала пластическому деформированию, определяемое совместным влиянием процессов упрочнения и разупрочнения, является функцией температуры, величины деформации и скорости деформации.
-
Моделирование процесса многодиапазонной сортировки деталей
Лабораторная работа № 2 «Моделирование процесса многодиапазонной сортировки деталей» Бусалаева О.Н. Группа АУ-320 Отчет 1. Цель работы 1.1. Изучение моделирования процессов сортировки соединений.
-
Устройство и принцип действия автономной системы отопления
Отчет к лабораторной работе №4 Устройство и принцип действия автономной системы отопления Выполнила подгруппа №1 в составе студентов АС-479: Варфоломеева Е.О., Выползов Я.Ю., Гринько В.А., Корабельников В.О., Федориненко А.А.
-
Экспериментальное определение частотных характеристик
Федеральное агентство по образованию Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Ивановский государственный энергетический университет им. В. И. Ленина»
-
Определение перемещений и напряжений при ударном нагружении элементов конструкций Оценка ударной
Отчет по лабораторной работе «Определение перемещений и напряжений при ударном нагружении элементов конструкций» Цель работы: определение динамических перемещений и напряжений в балке и пружине; сравнение расчетных и экспериментальных значений определяемых величин. Удар возникает при взаимодействии двух или нескольких тел (элементов конструкций) с резко различными скоростями.
-
Исследование косого изгиба балки
Экспериментальное определение максимальных прогибов и напряжений при косом изгибе балки и их сравнение с аналогичными расчетными значениями. Схема экспериментальной установки для исследования косого изгиба балки. Оценка прочности и жесткости балки.
-
Исследование широкополосных трансформаторов
Министерство образования и науки Республики Казахстан Северо-Казахстанский Государственный университет имени М. Козыбаева Факультет энергетики и машиностроения
-
Определение критических сил стержней при продольном изгибе
Отчет по лабораторной работе «Определение критических сил стержней при продольном изгибе» Цель работы: расчетное и экспериментальное определение критических сил стержней большой и средней гибкости; сравнение результатов расчета и эксперимента.
-
Сравнительный анализ систем электронного документооборота
Министерство образования Республики Беларусь ГУО «Белорусский государственный университет» Исторический факультет Кафедра источниковедения Отчет
-
Моделирование напряженно-деформированного состояния деталей при дорновании
Моделирование напряженно-деформированного состояния деталей при дорновании Актуальность. Для повышения эффективности технологических процессов дорнования необходимо иметь модель напряженно – деформированного состояния