Название: Алгебра матриц
Вид работы: реферат
Рубрика: Математика
Размер файла: 160.32 Kb
Скачать файл: referat.me-214792.docx
Краткое описание работы: Основные понятия. Линейные операции над матрицами. Умножение матриц. Свойства умножения матриц. Вырожденные и невырожденные матрицы.
Алгебра матриц
Основные понятия
Определение. Прямоугольная таблица из m строк и n столбцов, заполненная некоторыми математическими объектами, называется
– матрицей.
Мы будем рассматривать числовые матрицы. Числа, составляющие матрицу, называются ее элементами. Для обозначения матрицы, как правило, используются круглые скобки. При записи, в общем виде элементы матрицы обозначаются одной буквой с двумя индексами, из которых первый указывает номер строки, а второй – номер столбца матрицы. Например, матрица
|

|
В сокращенной записи: А=(аij ); где аij - действительные числа, i=1,2,…m;
j=1,2,…,n (кратко
,
. ). Произведение
называют размером матрицы.
Матрица называется квадратной порядка n, если число ее строк равно числу столбцов и равно n:

Упорядоченный набор элементов а11
,а22
,…,аnn
называется главной диагональю, в свою очередь, а1
n
,а2,
n
-1
,…,аn
1
– побочной диагональю матрицы. Квадратная матрица, элементы которой удовлетворяют условию: ![]()
называется диагональной, т.е. диагональная матрица имеет вид:

Диагональная матрица порядка n называется единичной, если все элементы ее главной диагонали равны 1. Матрица любого размера называется нулевой или нуль матрицей, если все ее элементы равны нулю. Единичная матрица обозначается буквой Е, нулевая – О. Матрицы имеют вид:
|


Линейные операции над матрицами
Определение. Суммой матриц А=(аij
) и B=(bij
) одинаковых размеров
называется матрица С=(сij
) тех же размеров, такая что cij
=aij
+bij
для всех i и j.
.
Таким образом, чтобы сложить матрицы А и В, надо сложить их элементы, стоящие на одинаковых местах. Например,
A + B =
= C
Определение. Произведение матрицы А на число l называется матрица lА=(l аij ), получаемая умножением всех элементов матрицы А на число l.

Например, если
и l=5, то ![]()
Разность матриц А и В можно определить равенством А-В=А+(-1)В.
Рассмотренные операции называются линейными.
Отметим некоторые свойства операций.
Пусть А,В,С – матрицы одинакового размера; a,b - действительные числа.
А+В = В+А – коммутативность сложения.
(А+В)+С = А+(В+С) – ассоциативность сложения.
Матрица О, состоящая из нулей, играет роль нуля: А+О=А.
Для любой матицы А существует противоположная –А, элементы которой отличаются от элементов А знаком, при этом А+( -А)=О.
a(bА) = (ab)А = (aА)b. 6. (a+b)А = aА+bА.
7. a(А+В) = aА+aВ. 8. 1* А = А. 9. 0 * А = 0.
Умножение матриц
В матричной алгебре важную роль играет операция умножения матриц, это весьма своеобразная операция.
Определение. Произведением матрицы А=(аij
) размера
и прямоугольной матрицы B=(bij
) размера
называется прямоугольная матрица С=(сij
) размера
, такая что cij
=ai
1
+b1
j
+ ai
2
+b2
j
+…+ aik
+bkj
;
,
.
Таким образом, элемент произведения матриц А и В, стоящий в i-ой строке и j-ом столбце, равен сумме произведений элементов i-ой строки первой матрицы А на соответствующие элементы j-ого столбца второй матрицы В т.е.
.
Произведение С=АВ определено, если число столбцов матрицы А равно числу строк матрицы В. Это условие, а также размеры матриц можно представить схемой:
![]()
Очевидно, что операция умножения квадратных матриц всегда определена.
Примеры. Найдем произведения матриц АВ и ВА, если они существуют.
1.
,
.
![]()
![]()
![]()
2.
,
.
![]()

![]()
Таким образом, коммутативный (переместительный) закон умножения матриц, вообще говоря, не выполняется, т.е.
В частном случае коммутативным законом обладает произведение любой квадратной матрицы А n-го порядка на единичную матрицу Е такого же порядка, т.е. ![]()
3.
,
.
Для этих матриц произведение как АВ ,так и ВА не существует.
, 
![]()
Получим
, ВА – не существует.
Свойства умножения матриц.
Пусть А,В,С – матрицы соответствующих размеров (т.е. произведения матриц определены), l - действительное число. Тогда на основании определений операций и свойств действительных чисел имеют место следующие свойства:
(АВ)С = А(ВС) – ассоциативность.
(А+В)С = АС+ВС – дистрибутивность.
А(В+С) = АВ+АС – дистрибутивность.
l(АВ) = (lА)В = А(lВ).
ЕА = АЕ = А, для квадратных матриц единичная матрица Е играет роль единицы.
Приведем пример доказательства лишь одного свойства. Докажем, например, свойство 3.
Пусть для А=(аij ), B=(bij ), C=(cij ) произведения матриц определены. Найдем элемент i-ой строки и j-го столбца матрицы А(В+С). Это будет число
аi 1 (b1 j +c1 j )+ аi 2 (b2 j +c2 j )+…+аin (bnj +cnj ) =
(аi 1 b1 j +ai 2 b2 j +…+ain bnj )+ (аi 1 c1 j +ai 2 c2 j +…+ain cnj ).
Первая сумма в правой части равенства равна элементу из i-ой строки и j-го столбца матрицы АВ, а вторая сумма равна элементу из i-ой строки и j-го столбца матрицы АС. Рассуждение верно при любых i и j, то свойство 3 доказано.
Упражнение 1. Проверьте свойство ассоциативности 1 для матриц:
,
,
.
Упражнение 2. Проверьте свойство дистрибутивности 2 для матриц:
,
,
.
Упражнение 3. Найти матрицу А3
, если
.
Вырожденные и невырожденные матрицы
Определение. Матрица называется вырожденной, если ее определитель равен нулю, и невырожденной, если определитель матрицы отличен от нуля.
Пример.
,
= 16-15 = 1
0; А – невырожденная матрица.
,
= 12-12 = 0; А – вырожденная матрица.
Теорема. Произведение матриц есть вырожденная матрица тогда и только тогда, когда хотя бы один из множителей есть вырожденная матрица.
Необходимость. Пусть АВ – вырожденная матрица, т.е.
=0. Тогда, в силу того, что определитель произведения матриц равен произведению определителей перемножаемых матриц, имеем
Это значит, что хотя бы одна из матриц А или В является вырожденной.
Достаточность. Пусть в произведении АВ матрица А вырожденная, т.е.
=0. Найдем
, т.к.
=0; итак,
=0; АВ - вырожденная матрица.
Замечание. Доказанная теорема справедлива для любого числа множителей.
Обратная матрица
Определение. Квадратная матрица В называется обратной по отношению к матрице А такого же размера, если
АВ = ВА = Е. (1)
Пример.
,
.
![]()
![]()
В – матрица обратная к А.
Теорема. Если для данной матрицы обратная существует, то она определяется однозначно.
Предположим, что для матрицы А существуют матрицы Х и У, такие, что
АХ = ХА = Е (2)
АУ = УА = Е (3)
Умножая одно из равенств, например, АХ = Е слева на У, получим У(АХ) = УЕ. В силу ассоциативности умножения имеем (УА)Х = УЕ. Поскольку УА = Е, то ЕХ = УЕ, т.е. Х = У. Теорема доказана.
Теорема (необходимое и достаточное условие существования обратной матрицы).
Обратная матрица А-1 существует тогда и только тогда, когда исходная матрица А невырожденная.
Необходимость. Пусть для матрицы А существует обратная А-1
, т.е. А
А-1
= А-1
А = Е. Тогда, ½А
А-1
½= ½А½
½А-1
½=½Е½=1, т.е. ½А½
0 и ½А-1
½
0; А – невырожденная.
Достаточность. Пусть дана невырожденная матрица порядка n
,
так что ее определитель
0. Рассмотри матрицу, составленную из алгебраических дополнений к элементам матрицы А:
,
ее называют присоединенной к матрице А.
Следует обратить внимание на то, что алгебраические дополнения к элементам i-ой строки матрицы А стоят в i-ом столбце матрицы А*
, для
.
![]()
Найдем произведения матриц АА*
и А*
А. Обозначим АА*
через С, тогда по определению произведения матриц имеем: Сij
= аi
1
А 1
j
+ аi
2
А 2
j
+ … + аin
Аnj
; i = 1, n: j = 1, n.
При i = j получим сумму произведений элементов i - ой строки на алгебраические дополнения этой же строки, такая сумма равняется значению определителя. Таким образом Сij
= |А| = D - это элементы главной диагонали матрицы С. При i
j, т.е. для элементов Сij
вне главной диагонали матрицы С, имеем сумму произведений всех элементов некоторой строки на алгебраические дополнения другой строки, такая сумма равняется нулю. Итак,
= АА*
Аналогично доказывается, что произведение А на А* равно той же матрице С. Таким образом, имеем А* А = АА* = С. Отсюда следует, что
![]()
Поэтому, если в качестве обратной матрицы взять
, то
Итак, обратная матрица существует и имеет вид:
.
Пример. Найдем матрицу, обратную к данной:

Находим D = |А| = -1 ¹ 0, А
существует. Далее находим алгебраические дополнения элементов матрицы А:
А
=
= 0 ; А
=
= -1; А
=
= 3;
А
=
= -3; А
=
= 3; А
=
= -4;
А
=
= 1; А
=
= -1; А
=
= 1;
А
= 
Похожие работы
-
Множества с двумя алгебраическими операциями кольца и поля
Предположим, что существует множество R, на котором расположены две алгебраические операции: сложение и умножение.
-
Математика матрица
Матрицы Матрица - прямоугольная (в частном случае квадратная) таблица с числами. Матрица m × n - это таблица из m строк и n столбцов. Если m = n, матрицу называют квадратной матрицей порядка n.
-
Задачи линейной алгебры Понятие матрицы Виды матриц Операции с матрицами Решение задач на преобразование
Министерство науки и образования Украины ДГМА Реферат на тему: Задачи линейной алгебры. Понятие матрицы. Виды матриц. Операции с матрицами. Решение задач на преобразование матриц.
-
Матрицы
Общие определения, связанные с понятием матрицы. Действия над матрицами. Определители 2-го и 3-го порядков, порядка n, порядок их вычисления и характерные свойства. Обратные матрицы и их ранг. Понятие и этапы элементарного преобразования матрицы.
-
Основы высшей математики
Понятие "матрица" в математике. Операция умножения (деления) матрицы любого размера на произвольное число. Операция и свойства умножения двух матриц. Транспонированная матрица – матрица, полученная из исходной матрицы с заменой строк на столбцы.
-
Решение матриц
Правила произведения матрицы и вектора, нахождения обратной матрицы и ее определителя. Элементарные преобразования матрицы: умножение на число, прибавление, перестановка и удаление строк, транспонирование. Решение системы уравнений методом Гаусса.
-
Алгебра матриц. Системы линейных уравнений
Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.
-
Матрицы Метод Гаусса
КОСТРОМСКОЙ ФИЛИАЛ ВОЕННОГО УНИВЕРСИТЕТА РХБ ЗАЩИТЫ Кафедра «Автоматизации управления войсками» Только для преподавателей "Утверждаю"
-
Матрицы действия с ними
Контрольная работа на тему: «Матрицы, действия с ними» Историческая справка Понятие Матрица (в математике) было введено в работах У. Гамильтона и А. Кэли в середине 19 века. Основы теории созданы К. Вейерштрассом и Ф. Фробениусом (2-я половина 19 века и начало 20 века). И.А. Лаппо-Данилевский разработал теорию аналитических функций от многих матричных аргументов и применил эту теорию к исследованию систем дифференциальных уравнений с аналитическими коэффициентами.
-
Задачи линейной алгебры
Задачи линейной алгебры