Referat.me

Название: Интеграл дифференциального уравнения

Вид работы: контрольная работа

Рубрика: Математика

Размер файла: 65.5 Kb

Скачать файл: referat.me-215169.docx

Краткое описание работы: Проверка непрерывности заданных функций. Интегрирование заданного уравнения и выполние преобразования с ним. Интегрирование однородного дифференциального уравнения. Решение линейного дифференциального уравнения. Общее решение неоднородного уравнения.

Интеграл дифференциального уравнения

АНО ВПО «НАЦИОНАЛЬНЫЙ ИНСТИТУТ ИМЕНИ ЕКАТЕРИНЫ ВЕЛИКОЙ»

Контрольное задание

По дисциплине: «Математика»

Москва 2010 г.


Контрольное задание:

Упражнения

1. Дана последовательность аn =(3n-5)/(4n+1). Установить номер n0 , начиная с которого выполняется неравенство │аn -А │ < 1/500.

Отв. n0 =719.

Найти:

2. lim (3-√х)/(х2 -81).Отв. –1/108.

х→9

3. lim (5х2 -8)/(х3 -3х2 +11).Отв. 0.

х→∞

Проверить непрерывность следующих функций:

4. у=5х/(х3 +8).Отв. При всех х≠–2 функция непрерывна.

5. у=(х2 +4)/ √(х2 -36). Отв. Функция непрерывна при всех значениях

│х│>6.

6. Определить точки разрыва функции у=(8х+2)/(16х2 -1).

Отв . Точки х1 =–1/4 и х2 =1/4.

Задача 1

Найти общий интеграл дифференциального уравнения:

Решение


Выполним разделение переменных, для этого разделим обе части уравнения на :

Проинтегрируем обе части уравнения и выполним преобразования:

Ответ

Задача 2

Проинтегрировать однородное дифференциальное уравнение:


Решение

Решение однородных дифференциальных уравнений осуществляется при помощи подстановки:

,

С учетом этого, исходное уравнение примет вид:

Выполним разделение переменных, для этого умножим обе части уравнения на , получим,

Проинтегрируем обе части уравнения и выполним преобразования:

Возвращаясь к переменной y , получим общий интеграл исходного уравнения:


Ответ

Задача 3

Найти общий интеграл дифференциального уравнения:

Решение

Покажем, что данное уравнение является однородным, т.е. может быть представлено в виде, . Преобразуем правую часть уравнения:

Следовательно, данное уравнение является однородным и для его решения будем использовать подстановку,

С учетом этого, уравнение примет вид:


Выполним разделение переменных, для этого умножим обе части уравнения на ,

Проинтегрируем обе части уравнения,

Возвращаясь к переменной y , получим,

Ответ

Задача 4

Решить линейное дифференциальное уравнение:

Решение

Составим характеристическое уравнение и найдем его корни:

Так как корни характеристического уравнения действительные и различны, то решение дифференциального уравнения будет иметь вид:

Ответ

Задача 5

Найти общее решение дифференциального уравнения:

Решение

Общее решение неоднородного уравнения будем искать в виде:

,

где – частное решение исходного неоднородного ДУ, – общее решение соответствующего однородного уравнения:

Составим характеристическое уравнение и найдем его корни:

Так как корни характеристического уравнения действительные и совпадают, то общее решение однородного ДУ будет иметь вид:


Учитывая, что правая часть имеет специальный вид, то частное решение неоднородного уравнения будем искать в виде,

,

где A , B , C – неопределенные коэффициенты. Найдем первую и вторую производные по x от и подставим полученные результаты в исходное уравнение:

Приравняем коэффициенты при соответствующих степенях x и определим их:

Следовательно, частное решение неоднородного ДУ примет вид:

Окончательно, общее решение исходного ДУ:

Ответ


Задача 6

Решить уравнение:

Решение

Общее решение неоднородного уравнения будем искать в виде:

,

где – частное решение исходного неоднородного ДУ, – общее решение соответствующего однородного уравнения:

Составим характеристическое уравнение и найдем его корни:

Так как корни характеристического уравнения действительные и различны, то общее решение однородного ДУ будет иметь вид:

Учитывая, что правая часть имеет специальный вид, то частное решение неоднородного уравнения будем искать в виде,

,

где A , B , C – неопределенные коэффициенты. Найдем первую и вторую производные по x от и подставим полученные результаты в исходное уравнение:


Приравняем коэффициенты при соответствующих степенях x и определим их:

Следовательно, частное решение неоднородного ДУ примет вид:

Окончательно, общее решение исходного ДУ:

Ответ

Комментарии к решению

В задаче №1, опечатка в предполагаемом ответе, упущен показатель степени при x .

В задаче №3, ответ следует оставить в виде, содержащем модуль , т.к. нет достаточных оснований его снять.

Похожие работы

  • Комплексные числа и действия над ними

    Лекция 10 Комплексные числа и действия над ними Рассмотрим уравнение Среди действительных чисел решений данного уравнения нет. По этой причине, в частности, квадратные уравнения имеют решения только тогда, когда дискриминант такого уравнения неотрицателен. Расширим множество действительных чисел, формально добавив к ним число

  • Особое решение дифференциальных уравнений первого порядка

    Введение Дифференциальным уравнением называется уравнение, связывающее независимые переменные, их функции и производные (или дифференциалы) этой функции.

  • Теория вероятностей

    Общее решение дифференциального уравнения первого порядка. Уравнение с разделенными переменными. Выбор частного интеграла. Частное решение дифференциального уравнения второго порядка. Вероятность проявления события, интегральная формула Муавра-Лапласа.

  • Решение дифференциальных уравнений

    Задачи на нахождение неопределенного интеграла с применением метода интегрирования по частям. Вычисление площади, ограниченной заданными параболами. Решение дифференциального уравнения первого порядка. Исследование на сходимость ряда; признаки сходимости.

  • Контрольная работа

    385. Вычислить несобственные интегралы или установить их расходимость. По определению несобственного интеграла имеем: Интеграл сходится. 301. Найти неопределенный интеграл.

  • Билеты по математическому анализу

    Экзаменационный билет по предмету МАТЕМАТИЧЕСКИЙ АНАЛИЗ Билет № Сформулируйте понятие полного дифференциала функции двух переменных и объясните его геометрический смысл.

  • Решение систем дифференциальных уравнений

    Предмет и методы изучения дифференциальной векторно-матричной алгебры, ее структура. Векторное решение однородных и неоднородных дифференциальных уравнений. Численное решение векторно-матричных уравнений. Формулы построения вычислительных процедур.

  • Высшая математика 4

    Контрольная работа высшая математика ЗАДАЧА 1. Вычислить пределы функций а) —д): а) 1. ► ► ► =-∞. Решение. Предел вычислен подстановкой

  • Определение интегралов

    Расчет неопределенных интегралов, проверка результатов дифференцированием. Вычислить по формуле Ньютона-Лейбница определенный интеграл. Вычисление площади фигуры, ограниченной заданной параболой и прямой. Общее решение дифференциального уравнения.

  • Анализ дифференциальных уравнений

    Порядок и процедура поиска решения дифференциального уравнения. Теорема существования и единственности решения задачи Коши. Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка, с разделяющими переменными.