Название: Двойное векторное произведение
Вид работы: реферат
Рубрика: Математика
Размер файла: 24.18 Kb
Скачать файл: referat.me-215281.docx
Краткое описание работы: Трём векторам a, b и c можно поставить в соответствие вектор, равный a×(b×c). Этот вектор называют двойным векторным произведением векторов a, b и c. Двойное векторное произведение встречается в механике и физике.
Двойное векторное произведение
Выполнила: Ильенко Ульяна Игоревна, студентка 1 курса, математического факультета
Запорожский национальный университет
Запорожье, 2006 год
Трём векторам a, b и c можно поставить в соответствие вектор, равный a×(b×c). Этот вектор называют двойным векторным произведением векторов a, b и c. Двойное векторное произведение встречается в механике и физике.
Двойное векторное произведение выражается через линейную комбинацию двух или трёх своих сомножителей по формуле
a×(b×c) = b(ac) - c(ab).
Докажем это. Обозначим через x разность левой и правой частей этого равенства
x = a×(b×c) - b(ac) + c(ab).
Нам достаточно показать, что x = 0.
Предположим, что векторы b и c коллинеарны. Если они оба нулевые, то в выражении для вектора x все слагаемые равны нулевому вектору и поэтому равенство
x = 0 выполнено. Если же один из коллинеарных векторов b, c ненулевой, например c, то для другого вектора при некотором α є R выполнено равенство b=αc. Но тогда
x=a×(αc×c)-αc(ac)+cα(ac)=0.
Предположим теперь, что векторы b и c неколлинеарны. Тогда их векторное произведение не равно нулевому вектору и ортогонально ненулевому вектору b. Векторы
образуют правый ортонормированный базис в V3 (это и отражается в обозначениях). В этом базисе справедливы следующие разложения векторов:
b=|b|i , c = c1i+c2k , a = a1i + a2j + a3k ,
ипоэтому
b×c = - |b|c2j , a×(b×c) = - |b|c2(a1k – a3i).
Крометого,
ac = a1c1 – a3c2 , ab = a1|b|.
В результате находим, что и в случае неколлинеарных векторов b и c выполнено равенство
x= -|b|c2(a1k – a3i) – (a1c1 – a3c2)|b|i + a1|b|(c1i + c2k) = 0.
Произведение (a×b)×c ортогонально вектору a×b, то есть в случае, когда векторы a и b не коллинеарны, лежит в плоскости векторов a и b. Следовательно, оно разлагается по векторам a и b, то есть существуют такие два числа x и y, что
(a×b)×c=xa+yb.
Чтобы найти эти числа, мы воспользуемся леммой, согласно которой существуют положительно ориентированный ортонормированный базис е1, е2, е3 ,связанный с векторами a, b и с формулами
a=a1e1
b=b1e1+b2e2,
c=c1e1+c2e2+c3e3.
В этом базисе вектор a×b имеет координаты (0,0, a1b2) , и потому вектор (a×b)×c – координаты
![]() |
Так как вектор xa+yb имеет координаты (xa1+yb1, yb2, 0), то, следовательно, формула (a×b)×c=xa+yb будет иметь место при
x = -b1c1 – b2c2 , y = a1c1.
Поскольку, с другой стороны, а1с1 = ас и b1c1+b2c2 = bc, этим доказано следующее предложение:
ПРЕДЛОЖЕНИЕ. Для любых векторов a, b, c имеет место равенство (a×b)×c=(ac)b-(bc)a.
Из этой формулы непосредственно вытекает следующее тождество Якоби:
(a×b)×c+(c×a)×b+(b×c)×a=0.
Действительно, в силу коммутативности скалярного умножения
(ac)b-(bc)a+(cb)a-(ab)c+(ba)c-(ca)b=0.
С помощью формулы (a×b)×c=(ac)b-(bc)a легко вычисляется также скалярное произведение (a×b)(x×y) двух векторных произведений. Действительно пользуясь антикоммутативностью смешанного произведения, мы немедленно получим, что
(a×b)(x×y)=((xa)y-(ya)x)b=(xa)(yb)-(ya)(xb),
то есть
Определитель в правой части этой формулы называется взаимным определителем Грамма пар векторов a,b и x,y.
При a=x и b=y формула даёт формулу
![]() |
которую можно переписать также в следующем изящном виде:
|a×b|2+|ab|2 = a2 b2.
Определитель в правой части предыдущей формулы называется определителем Грамма пары векторов a и b.
Поскольку |a×b| равно площади S параллелограмма, построенного на векторах a, b, формула
равносильна формуле
в которой векторные произведения явно не участвуют. Таким образом, мы видим, что определитель Грама пары векторов равен квадрату площади параллелограмма, построенного на этих векторах.
Вычислив скалярные произведения через координаты мы немедленно получим следующее тождество Лагранжа :
При а3=0 , b3 = 0 («случай плоскости») тождество Лагранжа равносильно тождеству
(a21+a22)(b21+b22) = (a1b1 + a2b2)2 + (a1b2 – a2b1)2,
Известному из теории комплексных чисел (тождество выражает тот факт, что произведение модулей комплексных чисел a1+ia2 и b1+ib2 равно модулю их произведения).
Аналогом вышеприведённых формулы и тождества существует и для трёх векторов a, b, c. В нём участвует определитель
называемый определителем Грамма тройки векторов a, b, c. В координатах относительно ортонормированного базиса e1, e2, e3 , в котором векторы a, b, c выражаются по формулам
a=a1e1
b=b1e1+b2e2,
c=c1e1+c2e2+c3e3 , этот определитель имеет вид
Автоматическое вычисление показывает, что он равен a21b22c23. С другой стороны, как мы уже знаем, a1b2c3= abc. Таким образом
, то есть
где V – объём параллелепипеда, построенного на векторах a, b, c.
Аналог формулы имеет вид
где определитель справа называется взаимным определителем Грама троек a, b, c и x, y, z.
Похожие работы
-
Задачи по Математике 2
Часть 1. Системы координат. Коэффициент Ламэ. Элементы векторной алгебры. (х0, у0) равно: Ответ: 0 [z0, y0] равно: Ответ: - х0 [z0, x0] равно: Ответ: y0
-
Основные сведения из векторной алгебры
Векторная алгебра Основные сведения из векторной алгебры. Различают два рода величин: скалярные и векторные. 1. Если некоторая величина вполне определяется ее числовым значением, то ее называют скалярной. Примерами скалярных величин могут служить: масса, плотность, работа, сила тока, температура.
-
Векторная алгебра 3
ВЕКТОРНАЯ АЛГЕБРА ВЕКТОРНАЯ АЛГЕБРА - раздел векторного исчисления в котором изучаются простейшие операции над (свободными) векторами. К числу операций относятся линейные операции над векторами: операция сложения векторов и умножения вектора на число.
-
Определители и их применение в алгебре и геометрии
Медико-биологический лицей г. Саратова. Предмет: математика. ОПРЕДЕЛИТЕЛИ И ИХ ПРИМЕНЕНИЕ В АЛГЕБРЕ И ГЕОМЕТРИИ. Выполнили: Дёмин Дмитрий, Грачёв Денис ученики 11 «б» класса МБЛ.
-
Векторная алгебра
Свойства и уравнения векторной алгебры.
-
Математика
Многочленом (полиномом) от матрицы А наз. Выр-е вида: р(А)=а А +а А +… а АІ+а А+а А Пусть дан многочлен р(Х), если р(А)=0, т.е. р(А) – нулевая, то М. А наз. корнем многочдена р(Х)
-
Решение задач с использованием векторов и матриц
ЛАБОРАТОРНАЯ РАБОТА КСАВ-03 4.1 Определение векторов и матриц в МС-документе 4.2 Математические операции над векторами и матрицами 4.3 Встроенные функции для обработки векторов и матриц
-
Некоторые примеры некоммутативных алгебр
Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Московский педагогический государственный университет»
-
Аффинные преобразования на плоскости
ПГУ им. Т.Г.Шевченко Курсовая работа. Тема: Аффинные преобразования на плоскости. Выполнила студентка 110 гр. физико-математического ф-та Пельтек Е.С.
-
Векторы
Упорядоченную совокупность ( x1, x2, ... , xn ) n вещественных чисел называют n-мерным вектором.