Referat.me

Название: Векторы

Вид работы: доклад

Рубрика: Математика

Размер файла: 19.84 Kb

Скачать файл: referat.me-214548.docx

Краткое описание работы: Упорядоченную совокупность ( x1, x2, ... , xn ) n вещественных чисел называют n-мерным вектором.

Векторы

Упорядоченную совокупность ( x1 , x2 , ... , xn ) n вещественных чисел называют n-мерным вектором, а числа xi ( i = ) - компонентами, или координатами, вектора.

Если, например, некоторый автомобильный завод должен выпустить в смену 50 легковых автомобилей, 100 грузовых, 10 автобусов, 50 комплектов запчастей для легковых автомобилей и 150 комплектов для грузовых автомобилей и автобусов, то производственную программу этого завода можно записать в виде вектора (50, 100, 10, 50, 150), имеющего пять компонент. Векторы обозначают жирными строчными буквами или буквами с чертой или стрелкой наверху. Два вектора называются равными, если они имеют одинаковое число компонент и их соответствующие компоненты равны.

Компоненты вектора нельзя менять местами, например, (3, 2, 5, 0, 1) ≠ (2, 3, 5, 0, 1).

Произведением вектора x = (x1 , x2 , ... ,xn ) на действительное число λ называется вектор x = ( λx1 , λx2 , ... , λxn ).

Суммой векторов x = (x1 , x2 , ... ,xn ) и y = (y1 , y2 , ... ,yn ) называется вектор
x + y = (x1 + y1 , x2 + y2 , ... , xn + yn ).

N-мерное векторное пространство Rn определяется как множество всех n-мерных векторов, для которых определены операции умножения на действительные числа и сложение.

Экономическая иллюстрация n-мерного векторного пространства: пространство благ (товаров). Под товаром мы будем понимать некоторое благо или услугу, поступившие в продажу в определенное время в определенном месте. Предположим, что существует конечное число наличных товаров n; количества каждого из них, приобретенные потребителем, характеризуются набором товаров

x = (x1 , x2 , ..., xn ),

где через xi обозначается количество i-го блага, приобретенного потребителем. Будем считать, что все товары обладают свойством произвольной делимости, так что может быть куплено любое неотрицательное количество каждого из них. Тогда все возможные наборы товаров являются векторами пространства товаров
C = { x = (x1 , x2 , ... , xn )| xi ≥ 0, i = }.

Система e1 , e2 , ... , em n-мерных векторов называется линейно зависимой, если найдутся такие числа λ1 , λ2 , ... , λm , из которых хотя бы одно отлично от нуля, что выполняется равенство λ1 e1 + λ2 e2 + ... + λm em = 0;

в противном случае данная система векторов называется линейно независимой, то есть указанное равенство возможно лишь в случае, когда все λ1 = λ2 = ... = λm = 0. Геометрический смысл линейной зависимости векторов в R3 , интерпретируемых как направленные отрезки, поясняют следующие теоремы.

Теорема 1. Система, состоящая из одного вектора, линейно зависима тогда и только тогда, когда этот вектор нулевой.

Теорема 2. Для того, чтобы два вектора были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны.

Теорема 3. Для того, чтобы три вектора были линейно зависимы, необходимо и достаточно, чтобы они были компланарны.

Тройка некомпланарных векторов a, b, c называется правой, если наблюдателю из их общего начала обход концов векторов a, b, c в указанном порядке кажется совершающимся по часовой стрелке. B противном случае a, b, c - левая тройка. Все правые (или левые) тройки векторов называются одинаково ориентированными.

Тройка e1 , e2 , e3 некомпланарных векторов в R3 называется базисом, а сами векторы e1 , e2 , e3 - базисными. Любой вектор a может быть единственным образом разложен по базисным векторам, то есть представлен в виде

а = x1 e1 + x2 e2 + x3 e3 , (1.1)

числа x1 , x2 , x3 в разложении (1.1) называются координатами вектора a в базисе e1 , e2 , e3 и обозначаются a(x1 , x2 , x3 ). Если векторы e1 , e2 , e3 попарно перпендикулярны и длина каждого из них равна единице, то базис называется ортонормированным, а координаты x1 , x2 , x3 - прямоугольными. Базисные векторы ортонормированного базиса будем обозначать i, j, k.

Будем предполагать, что в пространстве R3 выбрана правая система декартовых прямоугольных координат {0, i, j, k}.

Векторным произведением вектора а на вектор b называется вектор c, который определяется следующими тремя условиями:

1. Длина вектора c численно равна площади параллелограмма, построенного на векторах a и b, т. е. |c| = |a||b| sin (a^b).

2. Вектор c перпендикулярен к каждому из векторов a и b.

3. Векторы a, b и c, взятые в указанном порядке, образуют правую тройку.

Для векторного произведения c вводится обозначение c = [ab] или c = a x b.

Если векторы a и b коллинеарны, то sin(a^b) = 0 и [ab] = 0, в частности, [aa] = 0. Векторные произведения ортов: [ij] = k, [jk] = i, [ki] = j.

Если векторы a и b заданы в базисе i, j, k координатами a(a1 , a2 , a3 ), b(b1 , b2 , b3 ), то

Если векторное произведение двух векторов а и b скалярно умножается на третий вектор c, то такое произведение трех векторов называется смешанным произведением и обозначается символом a b c.

Если векторы a, b и c в базисе i, j, k заданы своими координатами a(a1 , a2 , a3 ),
b(b1 , b2 , b3 ), c(c1 , c2 , c3 ), то

Смешанное произведение имеет простое геометрическое толкование - это скаляр, по абсолютной величине равный объему параллелепипеда, построенного на трех данных векторах.

Если векторы образуют правую тройку, то их смешанное произведение есть число положительное, равное указанному объему; если же тройка

a, b, c - левая, то abc < 0 и V = - abc, следовательно V = |abc| .

Координаты векторов, встречающиеся в задачах первой главы, предполагаются заданными относительно правого ортонормированного базиса. Единичный вектор, сонаправленный вектору а, обозначается символом а0 . Символом r=ОМ обозначается радиус-вектор точки М, символами а, АВ или |а| , |АВ| обозначаются модули векторов а и АВ.

Похожие работы

  • Трюк с биномиальными коэффициентами

    С биномиальными коэффициентами проще иметь дело, когда их аргументами являются целые неотрицательные числа, однако возможны и полезны и более общие рассуждения.

  • Основные сведения из векторной алгебры

    Векторная алгебра Основные сведения из векторной алгебры. Различают два рода величин: скалярные и векторные. 1. Если некоторая величина вполне определяется ее числовым значением, то ее называют скалярной. Примерами скалярных величин могут служить: масса, плотность, работа, сила тока, температура.

  • Векторная алгебра 3

    ВЕКТОРНАЯ АЛГЕБРА ВЕКТОРНАЯ АЛГЕБРА - раздел векторного исчисления в котором изучаются простейшие операции над (свободными) векторами. К числу операций относятся линейные операции над векторами: операция сложения векторов и умножения вектора на число.

  • Собственные вектора и собственные значения линейного оператора

    Понятие собственных векторов и собственных значений, их свойства и характеристики, порядок нахождения собственных векторов оператора. Критерии определения независимости и ортогональности собственных векторов. Факторы и теоремы положительных матриц.

  • Канонический вид произвольных линейных преобразований

    Особенности нормальной формы линейного преобразования. Изучение собственных и присоединенных векторов линейного преобразования. Выделение подпространства, в котором преобразование А имеет только одно собственное значение. Анализ инвариантных множителей.

  • Векторная алгебра

    Свойства и уравнения векторной алгебры.

  • Векторный метод решения стереометрических задач

    Векторный метод решения стереометрических задач Задача 1. Отрезок, соединяющий вершину тетраэдра с центроидом противолежащей грани, называется медианой этого тетраэдра; отрезок, соединяющий середины противоположных ребер тетраэдра, называется его бимедианой. Докажите:

  • Двойное векторное произведение

    Трём векторам a, b и c можно поставить в соответствие вектор, равный a×(b×c). Этот вектор называют двойным векторным произведением векторов a, b и c. Двойное векторное произведение встречается в механике и физике.

  • Квадратные формы

    Лекция 10. Квадратичные формы и их связь с симметричными матрицами. Свойства собственных векторов и собственных чисел симметричной матрицы. Приведение квадратичной формы к каноническому виду.

  • Системы линейных уравнений

    Критерий совместности. Метод Гаусса. Формулы Крамера. Матричный метод.